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Solutions to Problem Set 4

Problem 17: Diffie-Hellman Key Exchange

(a) Recall Lucas test: g is a primitive root of p if and only if

g(p−1)/q 6≡ 1 (mod p)

for all q > 1 such that q | (p − 1). So here for p = 29 and g = 2, we check all the possible
q = {2, 4, 7, 14, 28} as the following:

228/2 ≡ 28 (mod 29)
228/4 ≡ 12 (mod 29)
228/7 ≡ 16 (mod 29)

228/14 ≡ 4 (mod 29)
228/28 ≡ 2 (mod 29)

Therefore, g has passed Lucas test and is a primitive root of p.

(b) According to Diffie-Hellman Key Exchange Protocol, Alice computes a ≡ gx ≡ 25 ≡ 3
(mod p), and Bob computes b ≡ gy ≡ 23 ≡ 8 (mod p). So the shared secret key is
k ≡ ay ≡ bx ≡ 27 (mod p).

Problem 18: ElGamal Cryptosystem

According to ElGamal Protocol, Bob’s public key is (p, g, b) = (29, 2, 8) and private key is
(p, g, y) = (29, 2, 3).

Problem 19: Square Roots with Composite Moduli

(a) |Z∗105| = φ(105) = φ(3) ∗ φ(5) ∗ φ(7) = 48.

(b) Because 105 = 3× 5× 7 and 1 ∈ Z∗105, then if b2 ≡ 1 (mod 105), we have

b2 ≡ 1 (mod 3)
b2 ≡ 1 (mod 5)
b2 ≡ 1 (mod 7)

And we can easily see that the squre roots of 1 in Z∗3, Z∗5 and Z∗3 are all ±1. Conversely, if
there is b satisfying the following equations:

b ≡ ±1 (mod 3)
b ≡ ±1 (mod 5)
b ≡ ±1 (mod 7)

Then b2 ≡ 1 (mod 105). According to Chinese Remainder theorem, we solve the above set
of equations and get all square roots of 1 modulo 105, {1, 29, 34, 41, 64, 71, 76, 104}.



2 Solutions to Problem Set 4

(c) From (b) and some extension of Claim 1 in Section 62, we could know that the mapping
cu : Z∗n → QRn defined by b 7−→ b2 (mod n) is a 8-to-1 function, in which n = pqr for
p, q, r distinct odd primes. The brief explanation is if a ∈ QRn, then a has two square roots
Sp = {±bp} mod p, two square roots Sq = {±bq} mod q and two square roots Sr = {±br}
mod r. Any triple combination {b1, b2, b3}, in which b1 ∈ Sp, b2 ∈ Sq and b3 ∈ Sr, uniquely
determines the number b ∈ Z∗n such that b2 ≡ a (mod n). So cu is a 8-to-1 function and
|QR105| = 1

8 |Z
∗
105| = 6.

From the above description, we can know that if a ∈ QRn, then a is also a quadratic residue
modulo p, q, r, and vice versa. So in order to find out all quadratic residues of n = 105,
we need to find out quadratic residues of p = 3, q = 5, r = 7 first. That’s QR3 = {1},
QR5 = {1, 4}, and QR7 = {1, 2, 4}. We solve the following set of equations by Chinese
Remainder theorem:

a ≡ a1 (mod 3), a1 ∈ QR3

a ≡ a2 (mod 5), a2 ∈ QR5

a ≡ a3 (mod 7), a3 ∈ QR7,

and we can get all the quadratic residues module 105, {1, 4, 16, 46, 64, 79}.

Problem 20: Computing Square Roots Modulo a Prime

(a) According to Euler Criterion, since 103 is a prime and 2(103−1)/2 ≡ 251 ≡ (210)5 ∗ 2 ≡
(−6)5 ∗ 2 ≡ 1 (mod 103), 2 is a quadratic residue modulo 103.

(b) According to Claim 3 in Section 64, since 103 ≡ 3 (mod 4) and 2 ∈ QR103, then b ≡
2(103+1)/4 ≡ 226 ≡ 38 (mod 103) is a square root of 2 modulo 103.

Problem 21: Quadratic Residues

You can use Legendre Symbol to directly show the result or make advantage of a prime’s primitive
roots as the following:

Since p is an odd prime, there must be some primitive root of p, denoted as g. Assume a ≡ gu

(mod p) and b ≡ gv (mod p). Since a, b ∈ QNRp, u and v must be odd integers. Then ab ≡ gu+v

(mod p). Because u+v is even, g(u+v)/2 is exactly a square root of ab. So ab is a quadratic residue
modulo p.
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