
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 2 (rev. 2)
Professor M. J. Fischer September 12, 2006

Lecture Notes 2

6 Symmetric cryptosystems

A symmetric cryptosystem consists of a set M of plaintext messages, a set C of ciphertexts, a set
K of keys, and two functions, an encryption function E : K ×M → C and a decryption function
D : K × C → M. We often write Ek(m) = E(k, m) and Dk(c) = D(k, c). One may view a
cryptosystem as consisting of a family of encryption and decryption functions indexed by k, but this
should not obscure the fact that in order to be useful, it must be possible to compute the functions
given an arbitrary key k.

We would like a cryptosystem to have three properties:

Decipherability ∀m ∈ M,∀k ∈ K, Dk(Ek(m)) = m. In other words, Dk is the (one-sided)
inverse of Ek.

Feasibility E and D, regarded as functions of two arguments, should be computable using a feasi-
ble amount of time and storage.

Security (weak) It should be difficult to find m given c = Ek(m) without knowing k.

7 Attack scenarios

While these properties are always required of a cryptosystem, we generally want m to remain secret
even when Eve has access to various kinds of additional information. This leads us to define several
attack scenarios.

Ciphertext-only attack This is the situation covered by weak security, where Eve knows only c
and tries to recover m.

Known plaintext attack Here we assume that Eve knows a sequence of plaintext-ciphertext pairs
(m1, c1), . . . , (mr, cr). Now she obtains a new ciphertext c 6∈ {c1, . . . , cr} and wants to
recover the corresponding message m.

Chosen plaintext attack This is like a known plaintext attack, except that before getting c, Eve
gets to choose messages m1, . . . ,mr and somehow get Alice (or Bob) to encrypt them for her
and supply her with the corresponding ciphertexts c1, . . . , cr.

Chosen ciphertext attack This is like a known plaintext attack, except that before getting c, Eve
gets to choose ciphertexts c1, . . . , cr and somehow get Alice (or Bob) to decrypt them for her
and supply her with the corresponding plaintext messages m1, . . . ,mr.

Still stronger versions of these attacks are possible. For example, in a chosen plaintext attack, Eve
might be able to choose the messages mi one at a time rather than all at once so that m2 depends
on the value of c1, m3 depends on both c1 and c2, and so forth. Such an attack is called adaptive.
Adaptive chosen ciphertext attacks are of course also possible, where each new ciphertext chosen

2 CPSC 467a Lecture Notes 2 (rev. 2)

depends on the plaintexts corresponding to the previously-chosen ciphertexts. One can have mixed
chosen plaintext and chosen ciphertext attacks where Eve can choose some plaintexts and some
ciphertexts and get the corresponding decryptions or encryptions of same. Adaptive versions of
mixed attacks are also possible.

One might question whether such attack scenarios are feasible in practice. Why would Alice
cooperate with Eve in this way? It all depends on the situation in which the cryptosystem is used.
“Alice” might be an Internet server, not a person, who encrypts/decrypts certain messages received
in the course of carrying out more complicated cryptographic protocols. We will see such protocols
later in the course. One could also imagine that an attacker gets hold of Alice’s encryption device
and is able to play with it for awhile even though she can’t extract the secret key that is stored inside.
For example, Eve might sit down at Alice’s computer when Alice is out to lunch, or she might slip
Alice’s cryptographic smart card out of her purse when Alice isn’t looking. Of course, if Alice
discovers the intrusion or learns that her card is missing, she’ll change her key and Eve’s efforts
would be for naught, but if Eve puts everything back in order before Alice returns, Alice might be
none the wiser.

8 Compromising a cryptosystem

We’ve already mentioned one kind of compromise of a cryptosystem—learning the secret message
m. But actually there are many different degrees of compromise, some more serious than others,
depending on the application. Here is a list of some of the kinds of compromise which one should
be aware of and ideally be able to prevent:

Complete break Eve finds the key k. Eve now has the same knowledge as both Alice and Bob, so
she can impersonate Alice when talking to Bob and impersonate Bob when talking to Alice.
She can also passively read all communications between Alice and Bob.

Complete message recovery Eve can recover any message m even without knowing k. She can
thus passively read all communications between Alice and Bob, but she can’t impersonate
one to the other since she is unable to produce encrypted messages herself.

Selected message recovery Eve is only able to recover certain messages from their ciphertexts.
Namely, there is a set M ⊆M of messages which Eve is able to read; others remain secure.
The larger the set M is, the more serious this kind of compromise.

Uncertain message recovery Eve is able to recover m from c only when certain keys k ∈ K ⊆ K
are in use. The larger the set K is, the more serious this kind of compromise. Because
the key is generally chosen randomly and uniformly from K, Eve has probably |K|/|K| of
compromising Alice’s messages.

Partial message recovery In each of the above kinds of compromise, Eve either succeeds or not in
recovering m. In partial message recovery, she obtains partial information about m. Initially,
Eve knows only the probability distribution from which m is drawn. After seeing the cipher-
text c = Ek(m), Eve may be able to determine that m lies in a subset M ⊆M. If |M | = 1,
then Eve has narrowed down the possibilities for m to a single message, so she has learned
m. But if |M | ≥ 2, she has obtained only partial information about M . Whether or not that
partial information is useful to Eve depends on what partial information she receives and of
course on the application.

CPSC 467a Lecture Notes 2 (rev. 2) 3

Information-theoretic or total security This is the other extreme in which Eve learns nothing at
all about m from seeing the ciphertext c. Whatever she knew about m before seeing c she
still knows, but she learns nothing new from seeing c. (Note that if Eve already knew m
beforehand, then she would learn nothing new about m from seeing c, so in that special case,
all cryptosystems are totally secure.)

9 Probabilistic model

When we start talking about the probability of Even learning the message, we must ask, “Where
does randomness enter into the discussion of attacks on a cryptosystem?” We assume there are three
such places:

1. The message itself is drawn at random from some probability distribution over the message
space M. That distribution is not necessarily uniform or even anything close to uniform1.
However, whatever the distribution is, we assume that it is part of Eve’s a priori knowledge.

2. The secret key is chosen uniformly from the key space K.

3. The attacker (Eve) has access to a source of randomness which she may use while attempting
to break the system. For example, Eve can choose an element k′ ∈ K at random. With
probability p = 1/|K|, her element k′ is actually the correct key k.

We further assume that these three sources of randomness are statistically independent. This
means that Eve’s random numbers do not depend on (nor give any information about) the message
or key used by Alice. It also means that Alice’s key does not depend on the particular message or
vice versa.

These multiple sources of randomness give rise to a joint probability distribution that assigns a
well-defined probability (i.e., a real number in the interval [0, 1]) to each triple (m, k, z), where m
is a message, k a key, and z is the result of the random choices Eve makes during her computation.
The independence requirement simply says that the probability of the triple (m, k, z) is precisely
the product of pm × pk × pz , where pm is the probability that m is the chosen message, pk is the
probability that k is the chosen key, and pz is the probability that z represents the random choices
made by Eve during the course of her computation.

When talking about random choices, we often use the term random variable to denote the ex-
periment of choosing an element from a set according to a particular probability distribution. For
example, we sometimes use m to denote the random variable that describes the experiment of Alice
choosing a message m ∈ M according to the assumed message distribution. Ambiguously, we
often use m to denote a particular element in the set M, perhaps the outcome of the experiment
described by the random variable m. While these two uses may sometimes be confusing, we will
try to make which usage is intended clear from context.

For example, if we let pm denote the probability that the message distribution assigns to the
particular message m ∈ M, then there is no experiment under consideration and it is clear that m
is being used to denote an element of M. On the other hand, if we talk about the event m = m0,
then we are using m in the sense of a random variable, and the event m = m0 means that the
outcome of the experiment described by m is m0. We denote the probability of that event occurring
by prob[m = m0], which in this case is simply pm0 . See section 15.1 of Trapp and Washington for
a more thorough review of basic probability definitions.

1The uniform distribution over a finite set Ω assigns probability 1/|Ω| to each point x ∈ Ω. In other words, each
element x ∈ Ω has equal probability of being chosen.

4 CPSC 467a Lecture Notes 2 (rev. 2)

10 Statistical independence

Information-theoretic security is defined formally in terms of statistical independence. In our prob-
abilistic model, we can consider both m and k to be random variables. Together, they induce a
probability distribution on the ciphertext c = E(k, m). Here we see the power of the random vari-
able notation, for c itself can be considered to be a random variable which is a function of k and m.
To define c formally, we must define the probability of each of the events c = c0 for c0 ∈ C. These
are easily derived from the random variables k and m as follows:

prob[c = c0] =
∑

k0,m0:c0=E(k0,m0)

prob[k = k0 ∧m = m0].

Because of the assumed independence of k and m, this is the same as

prob[c = c0] =
∑

k0,m0:c0=E(k0,m0)

prob[k = k0]× prob[m = m0].

The reason for the summation is that the same ciphertext can arise from many different key-message
pairs.

Now, what it means for the cryptosystem to be information-theoretically secure is that the ran-
dom variables c and m are statistically independent, that is,

prob[m = m0 ∧ c = c0] = prob[m = m0]× prob[c = c0]

for all m0 ∈M and c0 ∈ C.
This independence is often expressed more intuitively in terms of conditional probabilities. We

define

prob[m = m0 | c = c0] =
prob[m = m0 ∧ c = c0]

prob[c = c0]

assuming the denominator of the fraction is non-zero. This is the probability that m = m0 given
that c = c0. We then say that c and m are statistically independent if

prob[m = m0 | c = c0] = prob[m = m0]

for all m0 ∈ M and c0 ∈ C such that prob[c = c0] 6= 0. Hence, even after Eve receives the
ciphertext c0, her opinion of the likelihood of each message m0 is the same as it was initially.

11 Caeser cipher

To make these ideas more concrete, we look at the Caeser cipher, which is said to go back to
Roman times. It is an alphabetic cipher, that is, used to encode the 26 letters of the Roman alphabet
A,B, . . . , Z. For convenience, we will represent the letters by the numbers 0, 1, . . . , 25, where
A = 0, B = 1, . . . , Z = 25.

11.1 Encrypting single letters

The base cipher handles just single letters. The message space isM = {0, . . . , 25}, and the cipher-
text space and key space are the same, so M = C = K.

To encrypt, Ek replaces each letter m by the letter k places further on in the alphabet when read
circularly, with A following Z. To decrypt, Dk replaces each letter c by the letter k places earlier

CPSC 467a Lecture Notes 2 (rev. 2) 5

in the alphabet when read circularly. Mathematically, the encryption and decryption functions are
given by

Ek(m) = (m + k) mod 26

Dk(c) = (m− k) mod 26.

(Notation: x mod 26 is the remainder of x divided by 26.) Thus, if k = 3, then Ek(P) = S and
Dk(S) = P .

11.2 Encrypting strings

Of course, one is generally interested in encrypting more than single letter messages, so we need
a way to extend the encryption and decryption functions to strings of letters. The simplest way
of extending is to encrypt each letter separately using the same key k. If m1 . . .mr is an r-letter
message, then its encryption is c1 . . . cr, where ci = Ek(mi) = (mi + k) mod 26 for each i =
1, . . . , r. Decryption works similarly, letter by letter.

What we have really done by the above is to build a new cryptosystem from the base cryptosys-
tem on single letters. In the new system, the message space and ciphertext space are

Mr = Cr = M×M× . . .M︸ ︷︷ ︸
r

,

that is, length-r sequences of numbers from {0, . . . , 25}. The encryption and decryption functions
are

Er
k(m1 . . .mr) = Ek(m1) . . . Ek(mr)

Dr
k(c1 . . . cr) = Dk(c1) . . . Dk(cr).

Here, we use the superscript r to distinguish these functions from the base functions Ek() and Dk().

	Symmetric cryptosystems
	Attack scenarios
	Compromising a cryptosystem
	Probabilistic model
	Statistical independence
	Caeser cipher
	Encrypting single letters
	Encrypting strings

