
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 4 (rev. 1)
Professor M. J. Fischer September 19, 2006

Lecture Notes 4

17 Cryptanalysis of the Caeser Cipher

In the previous lecture, we discussed what a brute force attack on the Caeser cipher would look like:
Decrypt the ciphertext using each of the 26 possible keys, and see which decryption “looks like” a
valid message. With English-language messages, this works quite well in practice—generally all of
the decryptions but the correct one will be immediately recognized as garbled nonsense. The only
sensible-looking decryption is therefore the correct one.

A cryptanalyst might wish to automate the whole process. The question is, how does one write
a program to distinguish valid English sentences from gibberish? One could imagine applying all
sorts of complicated natural language processing techniques to this task. However, much simpler
techniques can be nearly as effective.

One simplification is to consider random messages whose letter frequencies are similar to that of
valid English sentences. That is, for each letter k, let pk be the probability (relative frequency) of that
letter in normal English text. Then a message m = m1m2 . . .mr has probability pm1 · pm2 · · · pmk

.
This is the probability of m being generated by the simple process that chooses r letters one at a
time according to the probability distribution (p0, . . . , p25).

Now, assume that Eve obtains a ciphertext c = Ek(m), where she knows that m was chosen ran-
domly as described above and k is a uniformly distributed Caeser cipher key. Eve easily computes
the 26 possible plaintext messages D0(c), ..., D25(c), one of which is correct. To choose which,
she computes the conditional probability of each message given c, then picks the message with the
greatest probability. This guess will not always be correct, but for letter distributions that are not
too close to uniform and sufficiently long messages, it works correctly with very high probability.

18 Monoalphabetic ciphers

The Caeser cipher uses only the 26 rotations out of the 26! permutations on the alphabet. The
monoalphabetic cipher uses them all. A key k is an arbitrary permutation of the alphabet. Ek(m)
replaces each letter a of m by k(a) to yield c. To decrypt, Dk(c) replaces each letter b of c by
k−1(b).

The size of the key space is |K| = 26! > 274, which is too large for a successful brute force
attack. However, monoalphabetic ciphers can be readily broken using letter frequency analysis,
given a long enough message. Because each occurrence of a letter a in the message is replaced
by the same letter k(a), the most frequently-occurring letter of m will correspond to the most
frequently-occurring letter of c. While Eve might not know what the most frequently-occurring
letter of m is, if the message is long enough and she knows that it is English, then it is quite likely
that the most frequently-occurring letter in m is one of the most frequently-occurring letters in
English, i.e., ‘e’ or maybe ‘t’. She can then assume that the most frequent letter b1 in c is ‘e’, the
next most frequent letter b2 is ‘t’, and so forth. Of course, not all of these guesses will be correct,
but the number of likely candidates for each ciphertext letter is greatly reduced. Moreover, many
wrong guesses can be quickly discarded even without constructing the entire trial key because they
lead to unlikely letter combinations.

2 CPSC 467a Lecture Notes 4 (rev. 1)

19 Playfair cipher

A cipher that encrypts two letters at a time is much harder to break than a monoalphabetic cipher
since it tends to mask the letter frequencies. The Playfair cipher, popularized by L. Playfair in
England circa 1854, is one such example.1 Here, the key is a 5 × 5 matrix of letters. Pairs of
plaintext letters are located in the matrix and used to produce a corresponding pair of ciphertext
letters.

For example, consider the key matrix that might result from the passphrase, “CRYPTOGRA-
PHY REQUIRES STRONG KEYS”:

C R Y P T
O G A H E
Q U I/J S N
K B D F L
M V W X Z

The matrix is constructed by writing the passphrase into the matrix cells from left to right and top
to bottom, omitting any letters that have previously been used. It is filled out with the letters of the
alphabet that do not occur in the passphrase, in alphabetical order. (In carrying out this process, “I”
and “J” are identified, so we are effectively working over a 25-character alphabet.) Note that each
letter of the alphabet occurs exactly once in the resulting matrix.

A message to be encrypted is first broken up into pairs of letters. For example, the message
“MEET ME AT THE SUBWAY” would be broken into the pairs “ME” “ET” “ME” “AT” “TH”
“ES” “UB” “WA” “YX”. Note that we have padded the message with a trailing “X” in order to make
its length even, and spaces have been suppressed. Now, each pair of plaintext letters is encrypted.
For example, the pair “AT” would be encrypted by taking the rectangle with “A” and “T” as its
corners and then using the letters from the other two corners as the cipher text. In this example, the
encryption of “AT” is “EY”. Decryption is by a similar procedure. The cipher also contains rules
for handling various special cases such as when both plaintext letters occur in the same row or the
same column or both. In decrypting, one also must resolve the I/J ambiguity and figure out when to
remove the padding character.

20 Hill cipher

The Hill cipher is another example of a cipher that encrypts groups of letters at once, thereby tending
to mask letter frequencies. It is based on linear algebra. The key is, say, a non-singular 3× 3 matrix
K. The message m is divided into vectors mi of 3 letters each. Encryption is just the matrix-vector
product Kv. Decryption is the same using K−1.

Unfortunately, the Hill cipher succumbs to a known plaintext attack. Given three linearly in-
dependent vectors m1, m2, and m3 and the corresponding ciphertexts ci = Kmi, i = 1, 2, 3, it is
straightforward to solve for K.

21 Polyalphabetic ciphers

Another way to strengthen monoalphabetic ciphers is to use different substitutions for different let-
ter positions. For example, one might choose 10 different alphabet permutations k1, . . . , k10, use k1

1See Menezes et. al., “Handbook of Applied Cryptography”, p. 239–240, for details.

CPSC 467a Lecture Notes 4 (rev. 1) 3

for the first letter of m, k2 for the second letter, and so forth, repeating this sequence after every 10
letters. While this is much harder to break than monoalphabetic ciphers, it turns out that letter fre-
quency analysis can still be used. Every 10th letter is encrypted using the same permutation, so the
submessage consisting of just those letters still exhibits normal English language letter frequencies.

22 Transposition techniques

All of the methods discussed so far are based on letter substitution. Another technique is to rearrange
the letters of the plaintext. For example, one might write a plaintext message into a matrix by rows
and then read it out by columns. While transposition does not seem like a very powerful technique
by itself, when used in combination with substitution techniques it can be quite effective. Most
practical symmetric cryptosystems are built by composing together many stages of substitutions
and transpositions.

23 Composition of Ciphers

Ciphers can be composed to create new ciphers. For example, suppose (E1, D1) and (E2, D2) are
two ciphers. The composition is the cipher (E,D) with keys of the form k = (k1, k2), where

E(k1,k2)(m) = Ek2(Ek1(m))

and similarly,
D(k1,k2)(c) = Dk1(Dk2(m)).

This may lead to a stronger cipher or it may not, and it can be difficult to analyze. Indeed, practical
symmetric cryptosystems such as DES and AES tend to be built in this modular way as a compo-
sition of simpler systems. Each component offers little security by itself, but when composed, the
layers obscure the message to the point that it is difficult for an adversary to recover. The trick is
to find ciphers that do successfully hide useful information from a would-be attacker when used in
concert.

24 Double Caeser

To illustrate that composition doesn’t always increase the strength of a cipher, let’s consider double
Caeser, which is simply the Caeser cipher composed with itself. One might hope that double Caeser
is more resistant to a brute force attack since now there are 262 = 676 possible key pairs (k1, k2).
Unfortunately, that is not the case, for there are still only 26 possible decryptions of each ciphertext.
This is because the double Caeser encryption function EE(k1,k2) is the same as the single Caeser
encryption function Ek with key k = (k1 + k2) mod 26. Even though the key space was enlarged,
the number of distinct encryption functions was not.

	Cryptanalysis of the Caeser Cipher
	Monoalphabetic ciphers
	Playfair cipher
	Hill cipher
	Polyalphabetic ciphers
	Transposition techniques
	Composition of Ciphers
	Double Caeser

