
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 6 (rev. 1)
Professor M. J. Fischer September 26, 2006

Lecture Notes 6

29 Stream Ciphers

Symmetric (one-key) cryptosystems fall into two broad classes, block ciphers and stream ciphers.
Recall that a block cipher encrypts large blocks of data at a time. Most of the ciphers we have been
discussing so far are of this type. A stream cipher on the other hand process a stream of characters
in an on-line fashion, emitting the ciphertext characters as it goes.

A stream cipher has two components, the cipher that is used to encrypt a given character, and a
keystream generator that produces a different key to be used for each successive letter.

A simple stream cipher can be built from the XOR cryptosystem used in the one-time pad.
However, rather than using a random key as long as the message, we instead generate the keystream
on the fly using a state machine. A keystream generator consists of three parts: an internal state, a
next-state generator, and an output function. The next-state generator and output functions can both
depend on (original) master key. At each stage, the state is updated and the output function applied
to obtain the next component of the keystream. Like a one-time pad, one must use different key for
each message; otherwise the system is easy to break.

To be secure, the keystream generator must be a good pseudorandom sequence generator. Any
regularities in the output of the keystream generator will give an attacker information about the
plaintext. In particular, if the attacker is ever able to figure out the internal state of the keystream
generator, then she will be able to predict all future outputs of the generator and decipher the re-
mainder of the ciphertext. It turns out that the linear congruential pseudorandom number generators
typically found in software libraries are quite insecure. After observing a relatively short sequence
of outputs from the generator, one can solve for the state and correctly predict all future outputs. For
the simple XOR cipher to be secure, a cryptographically strong pseudorandom number generator
must be used. Even so, the fact that a different key must be used for each message sent makes it
problematic in practice.

A possible improvement would be to make the next-state generator depend on the current plain-
text or ciphertext characters so that the generated keystreams will diverge on different messages,
even if the key is the same. However, this has the disadvantage that one bad ciphertext character
will render the rest of the message undecipherable to Bob since he can no longer know what the
current state is.

Output Feedback (OFB) block chaining mode, described in Lecture 5, essentially turns a block
cipher into an XOR stream cipher on blocks, for the successive block keys ki depend only on the
master key and i, not on the message or ciphertext.

30 Stream Ciphers from CFB and OFB Modes

OFB and CFB block chaining modes can be naturally extended to stream ciphers on units smaller
than full blocks. The idea is to use a shift register X to accumulate the feedback bits from previous
stages of encryption so that the full-sized blocks needed by the block chaining method are available.
X is initialized to some public initialization vector.

http://zoo.cs.yale.edu/classes/cs467/2006f/attach/ln05.html


2 CPSC 467a Lecture Notes 6 (rev. 1)

Assume for sake of discussion a 64-bit block size for the underlying block cipher and a character
size of s-bits. (Think of s = 8.) Let B = {0, 1}. We define two operations: Lm and Rm : B64 →
Bm. Lm(x) are the leftmost m bits of x, and Rm(x) are the rightmost m bits of x.

The extended version of CFB and OFB are very similar. Both compute a byte key ki and use it
to encrypt message byte mi with a simple XOR cipher. That is, ci = mi⊕ki. In both modes, ki can
be computed knowing only the ciphertext and master key, so Bob computes ki and then decrypts
by computing mi = ci ⊕ ki. Finally, both modes compute ki = Ls(Ek(Xi)) where Xi is the new
contents of the shift register at stage i. The two modes differ in how they update the shift register.
In extended CFB mode,

Xi = R64−s(Xi−1) · ci−1,

where ‘·’ denotes concatenation. In extended OFB mode,

Xi = R64−s(Xi−1) · ki−1.

Thus, CFB updates X using the previous ciphertext byte, whereas OFB updates it using the previous
byte key.

The differences between the two modes seem minor, but they have profound implications on
the resulting cryptosystem. In CFB mode, the loss of ciphertext byte ci will cause mi and several
succeeding message bytes to become undecipherable. At first sight it might seem that all future
message bytes would be lost, but if one looks carefully at the shift register updating algorithm, one
sees that Xj = cj−8cj−7 . . . cj−2cj−1 (in our special case of s = 8), so it depends on only the last
eight ciphertext bytes. Hence, Bob will be able to recover plaintext bytes beginning with mi+8 after
the loss of ci. In OFB mode, Xi depends only on i and the master key k (and the initialization vector
IV), so loss of a ciphertext byte causes loss of only the corresponding plaintext byte.

The downside of OFB is the same as for the one-time pad and other simple XOR ciphers,
namely, if two message streams are encrypted using the same master key, then the XOR of their
encryptions is the same as the XOR of the plaintexts. This allows Eve to recover potentially useful
information about the plaintexts and renders the method vulnerable to a known plaintext attack.
CFB does not suffer from this problem since different messages lead to different ciphertexts and
hence different key streams. However, even CFB mode has the undesirable property that the key
streams will be the same up to and including the first byte in which the two message streams differ.
This will enable Eve to determine the length of the common prefix of the two message streams and
also to determine the XOR of the first bytes at which they differ.

One way around this problem in both ciphers is to use a different initialization vector for each
message. The IV is sent to Bob in the clear, along with the ciphertext. X = X0 is initialized to IV,
then k0 = Ls(Ek(X0)) is computed, and then normal encryption proceeds.

31 Rotor machines

Rotor machines are mechanical devices for implementing stream ciphers. They played an important
role during the Second World War. The Germans believed their Enigma machine (Figure 1) was
unbreakable, but the Allies, with great effort, succeeded in breaking it and in reading many of the
top-secret military communications. This is said to have changed the course of the war.

The basic idea of a rotor machine is to use electrical switches to create a permutation of 26 input
wires to 26 output wires. Each input wire is attached to a key on a keyboard. Each output wire is
attached to a lamp. The keys are associated with letters just like on a computer keyboard. Each
lamp is also labeled by a letter from the alphabet. Pressing a key on the keyboard causes one of



CPSC 467a Lecture Notes 6 (rev. 1) 3

Figure 1: Enigma Rotor Machine (image from Wikipedia).

the lamps to light, which indicates the ciphertext character corresponding to the key pressed. The
operator types the message one character at a time and writes down for each letter the corresponding
lamp. To decrypt, one could switch inputs and outputs to obtain the inverse permutation, type in the
ciphertext, and read out the plaintext.

What I have described so far is just an electro-mechanical device for implementing a monoalpha-
betic cipher. However, rotor machine gain their power by changing the permutation after each letter.
Each rotor is individually wired to produce some random-looking fixed permutation π. Several ro-
tors stacked together produce the composition of the permutations implemented by the individual
rotors. In addition, the rotors can rotate relative to each other, implementing in effect a rotation
permutation (like the Caeser cipher uses). Let ρk(x) = x + k mod 26. Then rotor in position k
implements permutation ρkπρ−1

k . Several rotors could be stacked together to implement the compo-
sition of the permutations computed by each. For example, three rotors implementing permutations
π1, π2, and π3, placed in positions r1, r2, and r3, respectively, would produce the permutation

ρr1 · π1 · ρ−r1 · ρr2 · π2 · ρ−r2 · ρr3 · π3 · ρ−r3

= ρr1 · π1 · ρr2−r1 · π2 · ρr3−r2 · π3 · ρ−r3 (1)

After each letter is typed, some of the rotors change position, much like the mechanical odome-
ter used in older cars. The period before the rotor positions repeat is quite long, allowing long
messages to be sent without ever repeating the same permutation. Thus, a rotor machine is much
like a polyalphabetic substitution cipher, but with a very long period. However, unlike a pure polyal-
phabetic cipher, the successive permutations until the cycle repeats are not independent of each other



4 CPSC 467a Lecture Notes 6 (rev. 1)

but are related to each other by (1). This gives the first toehold into methods for breaking the cipher
(which are far beyond the scope of this course).

Several different kinds of rotor machines were built and used, both by the Germans and by
others, some of which work somewhat differently from what I described above. However, the
basic principles are the same. The interested reader can find much detailed material on the web
by searching for “enigma cipher machine” and “rotor cipher machine”. Nice descriptions may
be found at http://en.wikipedia.org/wiki/Enigma machine and http://www.
quadibloc.com/crypto/intro.htm.

32 Steganography

Steganography, hiding one message inside another, is an old technique that is still in use. For
example, a message can be hidden inside a graphics image file by using the low-order bit of each
pixel to encode the message. The visual effect of these tiny changes is probably too small to be
noticed by the user. The message can be hidden further by compressing it or by encrypting it with
a conventional cryptosystem. Unlike conventional cryptosystems, where we assume the attacker
knows everything about the cryptosystem except for the secret key, steganography relies on the
secrecy of the method of hiding for its security. If Eve does not even recognize the message as
ciphertext, then she is not likely to attempt to decrypt it.

33 Attacks by Malicious Active Adversaries

So far in the course, we have mostly been discussing a single cryptographic application, namely,
secret message transmission from Alice to Bob over a a publicly-readable channel. Our goal has
been to maintain privacy in the face of a passive eavesdropper Eve. Once we assume an active
adversary “Mallory” who has the power to modify messages and generate his own messages as well
as eavesdrop, life becomes more difficult.

Encryption alone no longer solves Alice and Bob’s problem. Alice sends c = Ek(m), but Bob
may receive a corrupted or forged c′ 6= c. How then does Bob know that the message he receives
really was sent by Alice?

The naive answer is that Bob computes m′ = Dk(c′), and if m′ “looks like” a valid message,
then Bob accepts it as having come from Alice. The reasoning here is that Mallory, not knowing k,
could not possibly have produced a valid-looking message.

For any particular cipher such as DES, that assumption may or may not be valid, but here are
two things to watch out for:

1. There are three successively easier possible attacks in which Mallory might produce fraudu-
lent messages:

(a) He might produce c′ = Ek(m′) for a message m′ of his choosing.

(b) He might produce a message c′ for which the corresponding plaintext m′ is a valid
message, even though he could not choose m′ in advance, nor perhaps he does not even
know what m′ is.

(c) He might be able to alter a legitimate message c from Alice to produce a new message
c′ that corresponds to an altered form m′ of the true message m. For example, if m
represents an amount of money, it is conceivable that Mallory could find the encryption
of m + 1 given the encryption of m, without knowing either m or m + 1.

http://en.wikipedia.org/wiki/Enigma_machine
http://www.quadibloc.com/crypto/intro.htm
http://www.quadibloc.com/crypto/intro.htm


CPSC 467a Lecture Notes 6 (rev. 1) 5

Attack (1a) is similar to, but not the same as, the notion of breaking the cryptosystem that
we have been studying. We have been asking that it be hard for Eve to compute m = Dk(c)
knowing c but not k. To carry out attack (1a) requires that Mallory compute Ek(m) knowing
m but not k. It’s conceivable that he could do the latter without being able to do the former.

One form of attack (1b) clearly is possible, the so-called replay attack. This is when Mallory
substitutes a legitimate old encrypted message c′ for the current message c. It can be thwarted
by adding timestamps and/or sequence numbers to the messages, so that Bob can recognize
when old messages are being received. Of course, this only works if Alice and Bob anticipate
the attack and incorporate appropriate countermeasures into the protocol they are using.

However, even if replay attacks are ruled out, a cryptosystem that is secure against attack (1a)
might still permit attack (1b). There are all sorts of ways that Mallory can generate values c′.
What gives us confidence that Bob won’t accept one of them as being valid?

Attack (1c) might be possible even in a cryptosystem that is free from attacks (1a) and (1b).
For example, if c1 and c2 are encryptions of valid messages, perhaps so is c1 ⊕ c2. Whether
or not it is depends entirely on particular properties of Ek. It does not follow in general from
the difficulty of decrypting a given ciphertext. We will see some cryptosystems later which
do have the property of being vulnerable to attack (1c). In some contexts, this can actually be
a useful property, as we will see.

2. Cryptosystems are not always used to send natural language or other highly-redundant mes-
sages. For example, suppose Alice wants to send Bob her password to a web site. Knowing
full well the dangers of sending passwords in the clear over the internet, she chooses to en-
crypt it instead. Since passwords are supposed to look like random strings of characters, Bob
will likely accept anything he gets from Alice. He could be quite embarrassed (or worse)
claiming he knew the correct password when in fact the password he thought was from Alice
was actually a fraudulent one derived from a random ciphertext c′ produced by Mallory.

34 Message authentication codes (MACs)

What Alice and Bob need to solve their problem is called a Message Authentication Code or MAC.
A MAC is generated by a function function Ck(m) that can be computed by anyone knowing a
secret key k. However, it should be hard for an attacker to find any pair (m, ξ) such that ξ = Ck(m)
without knowing k. In fact, this should remain hard even if the attacker knows a set of valid MAC
pairs {(m1, ξ1), . . . , (mt, ξt)} that Alice previously sent, so long as m itself is not the message in
one of the known pairs.

A block cipher such as DES can be used to compute a MAC by making use of one of the
ciphertext chaining modes, CBC or CFB. (See Lecture notes 5.) In these modes, the last ciphertext
block ct depends on all t message blocks m1, . . . ,mt. Therefore, we define Ck(m) = ct. The result
of this process is reputed to be a good MAC generation function. Note that the MAC is only a single
block long, which in general is much shorter than the message. A MAC acts like a checksum for
preserving data integrity, but it has the advantage that an adversary cannot compute a valid MAC
for an altered message.

Using a MAC, Alice can send a message m in the clear and also send ξ = Ck(m). Bob receives
m′ and ξ′, possibly different from what Alice sent. Bob checks that ξ′ = Ck(m′) and if so, accepts
m′ as a valid message from Alice. We say that Mallory successfully cheats if Bob accepts a message
m′ as valid that Alice never sent. The assumed property of a MAC is that Mallory cannot do this,

http://zoo.cs.yale.edu/classes/cs467/2006f/attach/ln05.html


6 CPSC 467a Lecture Notes 6 (rev. 1)

even knowing a set of valid MAC pairs previously sent by Alice. In this application, the MAC is
used to prevent forgery of messages, not for protection of privacy.

If Alice wants both privacy and authenticity, she can encrypt m and use the MAC to protect the
ciphertext from alteration. Thus, Alice sends c = Ek(m) and ξ = Ck(c). Bob, after receiving c′

and ξ′, only decrypts c′ after first verifying that ξ′ = Ck(c′).
Another possiblility is for Alice to send c = Ek(m) and ξ = Ck(m). Here, the MAC is

computed from m, not c. Bob, upon receiving c′ and ξ′, first decrypts c′ to get m′ and then checks
that ξ′ = Ck(m′). In practice, this might also work, but its security does not follow from the
assumed security property of the MAC. Even if Mallory cannot produce a pair (m′, ξ′) for an m′

that Alice never sent, it does not follow that he cannot produce a pair (c′, ξ′) such that c′ is not the
encryption of one of Alice’s messags, yet Bob will accept c′ as valid. If he succeeds is doing this,
then Bob will decrypt c′ to get m′ = Dk(c′), and incorrectly accept m′ as coming from Alice.

Note that this kind of forgery is indeed possible if, for example, the MAC function Ck and
the encryption function Ek are the same. In that case, Ck(Dk(c′)) = Ek(Dk(c′)) = c′, and Bob
accepts every pair (c′, c′) as valid, completely defeating the purpose of the MAC.1 A more likely
example where forgery would be possible would be if Ck were derived from Ek using the CBC or
CFB chaining modes as described above, for then the MAC is just the last ciphertext block c′t, and
Bob would accept (c′, c′t) as valid.

1The astute reader will notice that Ek(Dk(c)) might differ from c for c not in the range of Ek. However, in most of the
cryptosystems we consider, the message spaceM and ciphertext space C are the same. When that is the case, the range of
Ek is all of C, so every c ∈ C can be written as c = Ek(y) for some message y, and Ek(Dk(c)) = Ek(Dk(Ek(y))) =
Ek(y) = c.


	Stream Ciphers
	Stream Ciphers from CFB and OFB Modes
	Rotor machines
	Steganography
	Attacks by Malicious Active Adversaries
	Message authentication codes (MACs)

