
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 8 (rev. 1.1)
Professor M. J. Fischer October 3, 2006

Lecture Notes 8

39 Exponentiation: Speeding up the Computation

In section 38 (lecture notes 7), we described how to control the growth in the lengths of numbers
when computing me mod n, for numbers m, e, and n which are 1024 bits long. Nevertheless,
there is still a problem with the naive exponentiation algorithm that simply multiplies m by itself
a total of e − 1 times. Since the value of e is roughly 21024, that many iterations of the main
loop would be required, and the computation would run longer than the current age of the universe
(which is estimated to be 15 billion years). Assuming one loop iteration could be done in one
microsecond (very optimistic seeing as each iteration requires computing a product and remainder
of big numbers), only about 30 × 1012 iterations could be performed per year, and only about
450× 1021 iterations in the lifetime of the universe. But 450× 1021 ≈ 279, far less than e− 1.

The trick here is to use a more efficient exponentiation algorithm based on repeated squaring. To
compute me mod n where e = 2k is a power of two requires only k squarings, i.e., one computes

m0 = m
m1 = (m0 ∗m0) mod n
m2 = (m1 ∗m1) mod n

...
mk = (mk−1 ∗mk−1) mod n.

Clearly, each mi = m2i
mod n. me for values of e that are not powers of 2 can be obtained as the

product modulo n of certain mi’s. In particular, express e in binary as e = (bsbs−1 . . . b2b1b0)2.
Then mi is included in the final product if and only if bi = 1.

It is not necessary to perform this computation in two phases as described above. Rather, the two
phases can be combined together, resulting in a slicker and simpler algorithm that does not require
the explicit storage of the mi’s. I will give two versions of the resulting algorithm, a recursive
version and an iterative version. I’ll write both in C notation, but it should be understood that the C
programs only work for numbers smaller than 216. To handle larger numbers requires the use of big
number functions.

/* computes mˆe mod n recursively */
int modexp(int m, int e, int n)
{
int r;
if (e == 0) return 1; /* mˆ0 = 1 */
r = modexp(m*m % n, e/2, n); /* r = (mˆ2)ˆ(e/2) mod n */
if ((e&1) == 1) r = r*m % n; /* handle case of odd e */
return r;

}

This same idea can be expressed iteratively to achieve even greater efficiency.

http://zoo.cs.yale.edu/classes/cs467/2006f/attach/ln07.html

2 CPSC 467a Lecture Notes 8 (rev. 1.1)

/* computes mˆe mod n iteratively */
int modexp(int m, int e, int n)
{
int r = 1;
while (e > 0) {
if ((e&1) == 1) r = r*m % n;
e /= 2;
m = m*m % n;

}
return r;

}

The loop invariant is e > 0 ∧ (me0
0 mod n = rme mod n), where m0 and e0 are the initial values

of m and e, respectively. It is easily checked that this holds at the start of each iteration. If the loop
exits, then e = 0, so r is the desired result. Termination is ensured since e gets reduced during each
iteration.

Note that the last iteration of the loop computes a new value of m that is never used. A slight ef-
ficiency improvement results from restructuring the code to eliminate this unnecessary computation.
Following is one way of doing so.

/* computes mˆe mod n iteratively */
int modexp(int m, int e, int n)
{
int r = ((e&1) == 1) ? m % n : 1;
e /= 2;
while (e > 0) {
m = m*m % n;
if ((e&1) == 1) r = r*m % n;
e /= 2;

}
return r;

}

40 Number Theory Review

We next review some number theory that is needed for understanding RSA. These lecture notes
only provide a high-level overview. Further details are contained in course handouts 4–6 and in
Chapter 3 of the textbook.

40.1 Divisibility properties

Let a, b be integers and assume b > 0. The division theorem asserts that there are unique integers q
(the quotient) and r (the remainder) such that a = bq + r and 0 ≤ r < b. In case r = 0 we say that
b divides a (exactly) and write b |a.

Fact If d |(a + b), then either d divides both a and b, or d divides neither of them.

To see this, suppose d | (a + b) and d | a. Then by the division theorem, a + b = dq1 and a = dq2

for some integers q1 and q2. Subsituting for a and solving for b, we get

b = dq1 − dq2 = d(q1 − q2).

CPSC 467a Lecture Notes 8 (rev. 1.1) 3

But this implies d |b, again by the division theorem.

40.2 Greatest common divisor

The greatest common divisor of two integers a and b, written gcd(a, b), is the largest integer d such
that d |a and d |b. The gcd is always defined since 1 is a divisor of every integer, and the divisor of
a number cannot be larger (in absolute value) than the number itself.

The gcd of a and b is easily found if a and b are already given in factored form. Namely,
let pi be the ith prime and write a =

∏
pei

i and b =
∏

p fi
i . Then gcd(a, b) =

∏
p
min(ei,fi)
i .

However, factoring is believed to be a hard problem, and no polynomial-time factorization algorithm
is currently known. Indeed, if it were, then Eve could use it to break RSA, and RSA would be of no
interest as a cryptosystem.

Fortunately, gcd(a, b) can be computed efficiently without the need to factor a and b. Here’s a
sketch of the ideas that lead to the famous Euclidean algorithm.

The gcd function satisfies several identities. In the following, assume a ≥ b ≥ 0:

gcd(a, b) = gcd(b, a) (1)

gcd(a, 0) = a (2)

gcd(a, b) = gcd(a− b, b) (3)

Identity 3 follows from the Fact above. A simple inductive proof shows that identity 3 can be
strengthened to

gcd(a, b) = gcd(a mod b, b) (4)

where a mod b is the remainder of a divided by b. The Euclidean algorithm uses identities 1, 2,
and 4 recursively to compute gcd(a, b) in O(n) stages, where n is the sum of the lengths of a and
b when written in binary notation, and each stage requires at most one remainder computation. We
will return to this topic in lecture 9.

40.3 Basic definitions and notation

The set
Zn = {0, 1, . . . , n− 1}

contains the non-negative integers less than n. If one defines a binary “addition” operation on Zn

by
a⊕ b

df= (a + b) mod n

then Zn can be regarded as an Abelian group under addition (⊕).
The set

Z∗
n = {x ∈ Zn | gcd(x, n) = 1}

contains the non-negative integers less than n that are relatively prime to n, that is, which do not
share any non-trivial common factor with n. If one defines a binary “multiplication” operation on
Z∗

n by
a⊗ b

df= (a · b) mod n

then it can be shown that Z∗
n is an Abelian group under multiplication (⊗).

Euler’s totient (φ) function is defined to be the cardinality of Z∗
n:

φ(n) = |Z∗
n|

Properties of φ(n):

http://zoo.cs.yale.edu/classes/cs467/2006f/attach/ln09.html

4 CPSC 467a Lecture Notes 8 (rev. 1.1)

1. If p is prime, then φ(p) = p− 1.

2. More generally, if p is prime and k ≥ 1, then φ(pk) = pk − pk−1 = (p− 1)pk−1.

3. If gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).

These properties enable one to compute φ(n) for all n ≥ 1 provided one knows the factorization
of n. For example,

φ(126) = φ(2)φ(32)φ(7) = (2− 1)(3− 1)(32−1)(7− 1) = 1 · 2 · 3 · 6 = 36.

The 36 elements of Z∗
126 are: 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 65,

67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125.

41 Modular Arithmetic

There are several closely-related notions associated with “mod”.
First of all, mod is a binary operator. If a ≥ 0 and b ≥ 1 are integers, then a mod b is the

remainder of a divided by b. When either a or b is negative, there is no consensus on the definition of
mod. We are only interested in mod for positive b, and we find it convenient in that case to define
(a mod b) to be the smallest non-negative integer r such that a = bq + r for some integer q. Under
this definition, we always have that r = (a mod b) ∈ Zb. For example (−5 mod 3) = 1 ∈ Z3

since for q = −2, we have −5 = 3 · (−2) + 1. Note that in the C programming language, the mod
operator % is defined differently, so a % b 6= a mod b when a is negative and b positive.1

Mod is also used to define a relationship on integers:

a ≡ b (mod n) iff n |a− b.

That is, a and b have the same remainder when divided by n. An immediate consequence of this
definition is that

a ≡ b (mod n) iff (a mod n) = (b mod n).

Thus, the two notions of mod aren’t so different after all!
When n is fixed, the resulting two-place relationship ≡ is an equivalence relation. Its equiva-

lence classes are called residue classes modulo n and are denoted using the square-bracket notation
[b] = {a | a ≡ b (mod n)}. For example, for n = 7, we have [10] = {. . .− 11,−4, 3, 10, 17, . . .}.
Clearly, [a] = [b] iff a ≡ b (mod n). Thus, [−11], [−4], [3], [10], [17] are all names for the
same equivalence class. We choose the unique integer in the class that is also in Zn to be the
canonical or preferred name for the class. Thus, the canonical name for the class containing 10 is
[10 mod 7] = [3].

The relation≡ (mod n) is a congruence relation with respect to addition, subtraction, and mul-
tiplication of integers. This means that for each of these arithmetic operations�, if a ≡ a′ (mod n)
and b ≡ b′ (mod n), then a � b ≡ a′ � b′ (mod n). This implies that the class containing the
result of a + b, a − b, or a × b depends only on the classes to which a and b belong and not the

1For those of you who are interested, the C standard defines a% b to be the number satisfying the equation (a/b)∗ b+
(a % b) = a. C also defines a/b to be the result of rounding the real number a/b towards zero, so −5/3 = −1. Hence,
−5 % 3 = −5− (−5/3) ∗ 3 = −5 + 3 = −2.

CPSC 467a Lecture Notes 8 (rev. 1.1) 5

particular representatives chosen. Hence, we can define new addition, subtraction, and multiplica-
tion as operations on equivalence classes, or alternatively, regard them as operations directly on Zn

defined by
a⊕ b = (a + b) mod n
a	 b = (a− b) mod n
a⊗ b = (a× b) mod n

(5)

We remark that ⊗ is defined on all of Zn, but if a and b are both in Z∗
n, then a⊗ b is also in Z∗

n.

42 Modular Exponentiation and Euler’s Theorem

Recall the RSA encryption and decryption functions

Ee(m) = me mod n

Dd(c) = cd mod n

where n = pq is the product of two distinct large primes p and q. We see that both are based on
modular exponentiation of large integers, an operation that we now explore in some depth.

We mentioned in section 40.3 that Z∗
n is an Abelian group under ⊗. This means that it satisfies

the following properties:

Associativity ⊗ is an associative binary operation on Z∗
n. In particular, Z∗

n is closed under ⊗.

Identity 1 is an identity element for ⊗ in Z∗
n, that is 1 · x = x · 1 = x for all x ∈ Z∗

n.

Inverses For all x ∈ Z∗
n, there exists another element x−1 ∈ Z∗

n such that x · x−1 = x−1 · x = 1.

Commutativity ⊗ is commutative. (This is only true for Abelian groups.)

Example: Let n = 26 = 2 · 13. Then

Z∗
26 = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

and
φ(26) = |Z∗

26| = 12.

The inverses of the elements in Z∗
26 are given in Table 1. The bottom row of the table gives equiva-

Table 1: Table of inverses in Z∗
26.

x 1 3 5 7 9 11 15 17 19 21 23 25

x−1 1 9 21 15 3 19 7 23 11 5 17 25
= 1 9 −5 −11 3 −7 7 −3 11 5 −9 −1

lent integers in the range [−12, . . . , 13]. This makes it apparent that (26− x)−1 = −x−1. In other
words, the last row reads back to front the same as it does from front to back except that all of the
signs flip from + to − or − to +, so once the inverses for the first six numbers are known, the rest
of the table is easily filled in.

6 CPSC 467a Lecture Notes 8 (rev. 1.1)

It is not obvious from what I have said so far that inverses always exist for members of Z∗
n,, and

even showing that Z∗
n is closed under ⊗ takes a bit of work. Nevertheless, both are true. The latter

isn’t too hard for you to work out for yourself, and the former will become apparent later when we
show how to compute the inverse.

Recall Euler’s φ function which was defined in section 40.3 to be |Z∗
n|, the cardinality of Z∗

n.
From the properties given there, one can derive an explicit formula for φ(n).

Theorem 1 Write n in factored form, so n = pe1
1 · · · pek

k . where p1, . . . , pk are distinct primes and
e1, . . . , ek are positive integers.2 Then

φ(n) = (p1 − 1) · pe1−1
1 · · · (pk − 1) · pek−1

k .

When p is prime, we have simply φ(p) = (p − 1), and for the product of two distinct primes,
φ(pq) = (p− 1)(q − 1). Thus, φ(26) = (13− 1)(2− 1) = 12, as we have seen.

A general property of finite groups is that if any element x is repeatedly multiplied by itself, the
result is eventually 1. That is, 1 appears in the sequence x, (x⊗x), (x⊗x⊗x), . . ., after which the
sequence repeats. For example, for x = 5 in Z∗

26, we get the sequence 5, 25, 21, 1, 5, 25, 21, 1,
The result of multiplying x by itself k times can be written xk. The smallest integer k for which
xk = 1 is called the order of x, sometimes written ord(x). It follows from general properties of
groups that the order of any element of a group divides the order of the group. For Z∗

n, we therefore
have ord(x) |φ(n). From this fact, we immediately get

Theorem 2 (Euler’s theorem) xφ(n) ≡ 1 (mod n) for all x ∈ Z∗
n.

As a special case, we have

Theorem 3 (Fermat’s theorem) x(p−1) ≡ 1 (mod p) for all x, 1 ≤ x ≤ p− 1, where p is prime.

Corollary 4 Let r ≡ s (mod φ(n)). Then ar ≡ as (mod n) for all a ∈ Z∗
n.

Proof: If r ≡ s (mod φ(n)), then r = s+uφ(n) for some integer u. Then using Euler’s theorem,
we have

ar ≡ as+uφ(n) ≡ as · (au)φ(n) ≡ as · 1 ≡ as (mod n),

as desired.

The importance of this corollary to RSA is that it gives us a condition on e and d that ensures
the resulting cryptosystem works. That is, if we require that

ed ≡ 1 (mod φ(n)), (6)

then it follows from Corollary 4 that Dd(Ee(m)) = med ≡ m (mod n) for all messages m ∈ Z∗
n,

so Dd() really does decrypt messages in Z∗
n that are encrypted by Ee().

What about the case of messages m ∈ Zn − Z∗
n? There are several answers to this question.

1. For such m, either p |m or q |m (but not both because m < pq). If Alice ever sends such
a message and Eve is astute enough to compute gcd(m,n) (which she can easily do), then
Eve will succeed in breaking the cryptosystem. So Alice doesn’t really want to send such
messages if she can avoid it.

2By the fundamental theorem of arithmetic, every integer can be written uniquely in this way up to the ordering of the
factors.

CPSC 467a Lecture Notes 8 (rev. 1.1) 7

2. If Alice sends random messages, her probability of choosing a message not in Z∗
n is only about

2/
√

n. This is because the number of “bad” messages is only n−φ(n) = pq−(p−1)(q−1) =
p + q − 1 out of a total of n = pq messages altogether. If p and q are both 512 bits long,
then the probability of choosing a bad message is only about 2 · 2512/21024 = 1/2511. Such a
small probability event will likely never occur during the lifetime of the universe.

3. For the purists out there, RSA does in fact work for all m ∈ Zn, even though Euler’s theorem
fails for m 6∈ Z∗

n. For example, if m = 0, it is clear that (0e)d ≡ 0 (mod n), yet Euler’s
theorem fails since 0φ(n) 6≡ 1 (mod n). We omit the proof of this curiosity.

	Exponentiation: Speeding up the Computation
	Number Theory Review
	Divisibility properties
	Greatest common divisor
	Basic definitions and notation

	Modular Arithmetic
	Modular Exponentiation and Euler's Theorem

