
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 9 (rev. 1)
Professor M. J. Fischer October 5, 2006

Lecture Notes 9

43 Generating RSA Encryption and Decryption Exponents

We showed in section 42 (lecture notes 8) that RSA decryption works for m ∈ Z∗n if e and d are
chosen so that

ed ≡ 1 (mod φ(n)), (1)

that is, d is e−1 (the inverse of e) in Z∗φ(n).
We now turn to the question of how Alice chooses e and d to satisfy (1). One way she can do

this is to choose a random integer e ∈ Z∗φ(n) and then solve (1) for d. We will show how to do this
in Sections 45 and 46 below.

However, there is another issue, namely, how does Alice find random e ∈ Z∗φ(n)? If Z∗φ(n) is
large enough, then she can just choose random elements from Zφ(n) until she encounters one that
lies in Z∗φ(n). But how large is large enough? If φ(φ(n)) (the size of Z∗φ(n)) is much smaller than
φ(n) (the size of Zφ(n)), she might have to search for a long time before finding a suitable candidate
for e.

In general, Z∗m can be considerably smaller than m. For example, if m = |Zm| = 210, then
|Z∗m| = 48. In this case, the probability that a randomly-chosen element of Zm falls in Z∗m is only
48/210 = 8/35 = 0.228

The following theorem provides a crude lower bound on how small Z∗m can be relative to the
size of Zm that is nevertheless sufficient for our purposes.

Theorem 1 For all m ≥ 2,
|Z∗m|
|Zm|

≥ 1
1 + blog2 mc

.

Proof: Write m in factored form as m =
∏t

i=1 pei
i , where pi is the ith prime that divides m and

ei ≥ 1. Then φ(m) =
∏t

i=1(pi − 1)pei−1
i , so

|Z∗m|
|Zm|

=
φ(m)

m
=

∏t
i=1(pi − 1)pei−1

i∏t
i=1 pei

i

=
t∏

i=1

(
pi − 1

pi

)
. (2)

To estimate the size of
∏t

i=1(pi − 1)/pi, note that (pi − 1)/pi ≥ i/(i + 1). This follows since
(x− 1)/x is monotonic increasing in x, and pi ≥ i + 1. Then

t∏
i=1

(
pi − 1

pi

)
≥

t∏
i=1

(
i

i + 1

)
=

1
2
· 2
3
· 3
4
· · · t

t + 1
=

1
t + 1

. (3)

Clearly t ≤ blog2 mc since 2t ≤
∏t

i=1 pi ≤ m and t is an integer. Combining this fact with
equations (2) and (3) gives the desired result.

For n a 1024-bit integer, φ(n) < n < 21024. Hence, log2(φ(n)) < 1024, so blog2(φ(n))c ≤ 1023.
By Theorem 1, the fraction of elements in Zφ(n) that also lie in Z∗φ(n) is at least 1/1024. Therefore,
the expected number of random trials before Alice finds a number in Z∗φ(n) is provably at most 1024
and is most likely much smaller.

http://zoo.cs.yale.edu/classes/cs467/2006f/attach/ln08.html

2 CPSC 467a Lecture Notes 9 (rev. 1)

44 Euclidean algorithm

To test if d ∈ Z∗φ(n), Alice can test if gcd(d, φ(n)) = 1. How does she do this?
The basic ideas underlying the Euclidean algorithm were sketched in section 40.2 (lecture notes

8). Euclid’s algorithm is remarkable, not only because it was discovered a very long time ago, but
also because it works without knowing the factorization of a and b. It relies on the equation

gcd(a, b) = gcd(a− b, b) (4)

which holds when a ≥ b ≥ 0. This allows the problem of computing gcd(a, b) to be reduced to the
problem of computing gcd(a − b, b), which is “smaller” if b > 0. Here we measure the size of the
problem (a, b) by the sum a + b of the two arguments. (4) leads in turn leads to an easy recursive
algorithm:

int gcd(int a, int b)
{
if (a < b) return gcd(b, a);
else if (b == 0) return a;
else return gcd(a-b, b);

}

Nevertheless, this algorithm is not very efficient, as you will quickly discover if you attempt to use
it, say, to compute gcd(1000000, 2).

Repeatedly applying (4) to the pair (a, b) until it can’t be applied any more produces the se-
quence of pairs (a, b), (a− b, b), (a− 2b, b), . . . , (a− qb, b). The sequence stops when a− qb < b.
But the number of times you can subtract b from a is just the quotient ba/bc, and the amount a− qb
that is left is just the remainder a mod b. Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b). Since a mod b < b, it is also convenient to swap the elements of the pair. This results
in the Euclidean algorithm (in C notation):

int gcd(int a, int b)
{
if (b == 0) return a;
else return gcd(b, a % b);

}

45 Diophantine equations and modular inverses

Now that Alice knows how to choose d ∈ Z∗φ(n), how does she find e? That is, how does she solve
(1)? Note that e, if it exists, is a multiplicative inverse of d (mod n), that is, a number that, when
multiplied by d, gives 1.

Equation (1) is an instance of the general Diophantine equation

ax + by = c (5)

Here, a, b, c are given integers. A solution consists of integer values for the unknowns x and y. To
put (1) into this form, we note that ed ≡ 1 (mod φ(n)) iff ed+uφ(n) = 1 for some integer u. This
is seen to be an equation in the form of (5) where the unknowns x and y are e and u, respectively,
and the coefficients a, b, c are d, φ(n), and 1, respectively.

http://zoo.cs.yale.edu/classes/cs467/2006f/attach/ln08.html
http://zoo.cs.yale.edu/classes/cs467/2006f/attach/ln08.html

CPSC 467a Lecture Notes 9 (rev. 1) 3

46 Extended Euclidean algorithm

It turns out that (5) is closely related to the greatest common divisor, for it has a solution iff
gcd(a, b) | c. It can be solved by a process akin to the Euclidean algorithm, which we call the
Extended Euclidean algorithm. Here’s how it works.

The algorithm generates a sequence of triples of numbers Ti = (ri, ui, vi), each satisfying the
invariant

ri = aui + bvi ≥ 0. (6)

The first triple T1 is (a, 1, 0) if a ≥ 0 and (−a,−1, 0) if a < 0. The second trip T2 is (b, 0, 1) if
b ≥ 0 and (−b, 0,−1) if b < 0.

The algorithm generates Ti+2 from Ti and Ti+1 much the same as the Euclidean algorithm
generates (a mod b) from a and b. More precisely, let qi+1 = bri/ri+1c. Then Ti+2 = Ti −
qi+1Ti+1, that is,

ri+2 = ri − qi+1ri+1

ui+2 = ui − qi+1ui+1

vi+2 = vi − qi+1vi+1

Note that ri+2 = (ri mod ri+1), 1 so one sees that the sequence of generated pairs (r1, r2), (r2, r3),
(r3, r4), . . . , is exactly the same as the sequence of pairs generated by the Euclidean algorithm. Like
the Euclidean algorithm, we stop when rt = 0. Then rt−1 = gcd(a, b), and from (6) it follows that

gcd(a, b) = aut−1 + bvt−1 (7)

Returning to equation (5), if c = gcd(a, b), then x = ut−1 and y = vt−1 is a solution. If c is a
multiple of gcd(a, b), then c = k gcd(a, b) for some k and x = kut−1 and y = kvt−1 is a solution.
Otherwise, gcd(a, b) does not divide c, and one can show that (5) has no solution. See Handout
5 for further details, as well as for a discussion of how many solutions (5) has and how to find all
solutions.

Here’s an example. Suppose one wants to solve the equation

31x− 45y = 3 (8)

In this example, a = 31 and b = −45. We begin with the triples

T1 = (31, 1, 0)
T2 = (45, 0,−1)

The computation is shown in the following table:

i ri ui vi qi

1 31 1 0
2 45 0 −1 0
3 31 1 0 1
4 14 −1 −1 2
5 3 3 2 4
6 2 −13 −9 1
7 1 16 11 2
8 0 −45 −31

1This follows from the division theorem, which can be written in the form a = b · ba/bc + (a mod b).

http://zoo.cs.yale.edu/classes/cs467/2006f/course/handouts/ho05.pdf
http://zoo.cs.yale.edu/classes/cs467/2006f/course/handouts/ho05.pdf

4 CPSC 467a Lecture Notes 9 (rev. 1)

From T7 = (1, 16, 11) and (6), we obtain

1 = a× 16 + b× 11

Plugging in values a = 31 and b = −45, we compute

31× 16 + (−45)× 11 = 496− 495 = 1

as desired. The solution to (8) is then x = 3× 16 = 48 and y = 3× 11 = 33.

47 Generating RSA Modulus

We finally turn to the question of generating the RSA modulus, n = pq. Recall that the numbers
p and q should be random distinct primes of about the same length. The method for finding p and
q is similar to the “guess-and-check” method used in Section 43 to find random numbers in Z∗n.
Namely, keep generating random numbers p of the right length until a prime is found. Then keep
generating random numbers q of the right length until one is found that is prime and different from
p.

To generate a random prime of a given length, say k bits long, generate k − 1 random bits, put
a “1” at the front, regard the result as binary number, and test if it is prime. We defer the question
of how to test if the number is prime and look now at the expected number of trials before this
procedure will terminate.

The above procedure samples uniformly from the set Bk = Z2k − Z2k−1 of binary numbers of
length exactly k. Let pk be the fraction of elements in Bk that are prime. Then the expected number
of trials to find a prime will be 1/pk. While pk is difficult to determine exactly, the celebrated Prime
Number Theorem allows us to get a good estimate on that number.

Let π(n) be the number of numbers ≤ n that are prime. For example, π(10) = 4 since there
are four primes ≤ 10, namely, 2, 3, 5, 7. The prime number theorem asserts that π(n) is “approx-
imately”2 n/(lnn), where lnn is the natural logarithm (loge) of n. The chance that a randomly
picked number in Zn is prime is then π(n− 1)/n ≈ ((n− 1)/ ln(n− 1))/n ≈ 1/(lnn).

Since Bk = Z2k − Z2k−1 , we have

pk =
π(2k − 1)− π(2k−1 − 1)

2k−1

=
2π(2k − 1)

2k
− π(2k−1 − 1)

2k−1

≈ 2
ln 2k

− 1
ln 2k−1

≈ 1
ln 2k

=
1

k ln 2
.

Hence, the expected number of trials before success is approximately k ln 2. For k = 512, this
works out to 512× 0.693 . . . ≈ 355.

The remaining problem for generating an RSA key is how to test if a large number is prime.
Until very recently, no deterministic polynomial time algorithm was known for testing primality,
and even now it is not known whether any deterministic algorithm is feasible in practice. However,
there do exist fast probabilistic algorithms for testing primality, which we now discuss

2We ignore the critical issue of how good an approximation this is in these notes. The interested reader is referred to
a good mathematical text on number theory.

CPSC 467a Lecture Notes 9 (rev. 1) 5

48 Probabilistic Primality Tests

A deterministic test for primality is a procedure that, given as input a number n, correctly returns
the answer ‘composite’ or ‘prime’.3 To arrive at a probabilistic algorithm, we extend the notion
of a deterministic primality test in two ways: We give it an extra “helper” string a, and we allow
it to answer ‘?’, meaning “I don’t know”. Given input n and helper string a, such an output may
correctly answer either ‘composite’ or ‘?’ when n is composite, and it may correctly answer either
‘prime’ or ‘?’ when n is prime. If the algorithm gives a non-”?” answer, we say that the helper
string a is a witness to that answer.

Given an extended primality test T (n, a), we can use it to build a strong probabilistic primality
testing algorithm. On input n, do the following:

Algorithm P1(n):
repeat forever {

Generate a random helper string a;
Let r = T (n, a);
if (r 6= ‘?’) return r;

};

This algorithm has the property that it might not terminate (in case there are no witnesses to the
correct answer for n), but when it does terminate, the answer is correct.

Unfortunately, we do not know of any test that results in an efficient strong probabilistic primal-
ity testing algorithm. However, the above algorithm can be weakened slightly and still be useful.
What we do is to add a parameter t which is the maximum number of trials that we are willing to
perform. The algorithm then becomes:

Algorithm P2(n, t):
repeat t times {

Generate a random helper string a;
Let r = T (n, a);
if (r 6= ‘?’) return r;

}
return ‘?’;

Now the algorithm is allowed to give up and return ‘?’, but only after trying t times to find the
correct answer. If there are lots of witnesses to the correct answer, then the probability will be high
of finding one, so most of the time the algorithm will succeed. But even this assumption is stronger
than we know how to achieve.

49 Tests of compositeness

The tests that we will present are asymmetric. When n is composite, there are many witnesses to
that effect, but when n is prime, there are none. Hence, the test either outputs ‘composite’ or ‘?’ but
never ‘prime’. We call these tests of compositeness since an answer of ‘composite’ means that n is
definitely composite, but these tests can never say for sure that n is prime.

When algorithm P2 uses a test of compositeness, an answer of ‘composite’ likewise means that
n is definitely composite. Moreover, if there are many witnesses to n’s being composite and t is

3We assume that n ≥ 2, so that n is either composite or prime.

6 CPSC 467a Lecture Notes 9 (rev. 1)

sufficiently large, then the probability that P2(n, t) outputs ‘composite’ will be high. However, if n
is prime, then both the test and P2 will always output ‘?’. It is tempting to interpret P2’s output of
‘?’ to mean “n is probably prime”, but of course, it makes no sense to say that n is probably prime;
n either is or is not prime. But what does make sense is to say that the probability is very small that
P2 answers ‘?’ when n is composite.

In practice, we will indeed interpret the output ‘?’ to mean ‘prime’, but we understand that the
algorithm has the possibility of giving the wrong answer when n is composite. Whereas before our
algorithm would only report an answer when it was sure and would answer ‘?’ otherwise, now we
are considering algorithms that are allowed to make mistakes with (hopefully) small probability.

	Generating RSA Encryption and Decryption Exponents
	Euclidean algorithm
	Diophantine equations and modular inverses
	Extended Euclidean algorithm
	Generating RSA Modulus
	Probabilistic Primality Tests
	Tests of compositeness

