
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 11 (rev. 1)
Professor M. J. Fischer October 12, 2006

Lecture Notes 11

56 Primitive Roots

Let g ∈ Z∗n and consider the successive powers g, g2, g3, . . ., all taken modulo n. Because Z∗n is
finite, this sequence must eventually repeat. By Euler’s theorem, this sequence contains 1, namely,
gφ(n). Let k be the smallest positive number such that gk = 1 (in Z∗n). We call k the order of g
and write ord(g) = k. The elements {g, g2, . . . , gk = 1} form a subgroup S of Z∗n. The order of S
(number of elements in S) is ord(g); hence ord(g) |φ(n). We say that g generates S and that S is
cyclic.

We say g is a primitive root of n if g generates Z∗n, that is, every element of Z∗n can be written
as g raised to some power modulo n. By definition, this holds if and only if ord(g) = φ(n). Not
every integer n has primitive roots. By Gauss’s theorem, the numbers having primitive roots are
1, 2, 4, pk, 2pk, where p is an odd prime and k ≥ 1. In particular, every prime has primitive roots.

The number of primitive roots of p is φ(φ(p)). This is because if g is a primitive root of p and
x ∈ Z∗φ(p), then gx is also a primitive root of p.

Lucas test: g is a primitive root of p if and only if

g(p−1)/q 6≡ 1 (mod p)

for all q > 1 such that q | (p − 1). Clearly if the test fails for some q, then ord(g) ≤ (p − 1)/q <
p− 1 = φ(p), so g is not a primitive root of p. Conversely, if ord(g) < φ(p), then the test will fail
for q = (p− 1)/ord(g), which is one of the q’s included in the test since ord(g) |φ(p).

A drawback to the Lucas test is that one must try all the divisors of p − 1, and there can be
many. Moreover, to find the divisors efficiently implies the ability to factor. Thus, it does not lead to
an efficient algorithm for finding a primitive root of an arbitrary prime p. However, there are some
special cases which we can handle.

Let p and q be odd primes such that p = 2q + 1. There are lots of examples of such pairs,
e.g., q = 41 and p = 83. In this case, p − 1 = 2q, so p − 1 is easily factored and the Lucas
test easily employed. How many primitive roots of p are there? From the above, the number
is φ(φ(p)) = φ(p − 1) = φ(2)φ(q) = q − 1. Hence, the density of primitive roots in Z∗p is
(q−1)/(p−1) = (q−1)/2q ≈ 1/2. This makes it easy to find primitive roots of p probabilistically
— choose a random element a ∈ Z∗p and apply the Lucas test to it.

We defer the question of the density of primes q such that 2q + 1 is also prime but remark that
we can relax the requirements a bit. Suppose we start with a prime q and then consider the numbers
2q + 1, 3q + 1, 4q + 1, . . . until we find a prime p = uq + 1 in this sequence. By the prime number
theorem, approximately one out of every ln(q) numbers around the size of q will be prime. While
that applies to randomly chosen numbers, not the numbers in this particular sequence, there is at
least some hope that the density of primes will be similar. If so, we can expect that u will be about
ln(q), in which case it can be easily factored using exhaustive search. At that point, we can apply
the Lucas test as before to find primitive roots.

2 CPSC 467a Lecture Notes 11 (rev. 1)

57 Discrete Logarithm

Let y = bx over the reals. The ordinary base-b logarithm is the inverse of the exponential function,
so logb(y) = x. The discrete logarithm is defined similarly, but now arithmetic is performed in Z∗p
for a prime p. In particular, the discrete log to the base b of y modulo p is defined to be the least
non-negative integer x such that y ≡ bx (mod p) (if it exists), and we write x = logb(y) mod n.
If b is a primitive root of p, then logb(y) is defined for every y ∈ Z∗p.

The discrete log problem is the problem of computing logb(y) mod p given a prime p and prim-
itive root b of p. No known efficient algorithm is known for this problem and it is believed to be
intractable. However, it’s inverse, the function powerb(x) = bx mod p, is easily computable, so
powerb is an example of a so-called one-way function, that is a function that is easy to compute but
hard to invert.

58 Diffie-Hellman Key Exchange

Alice Bob

Choose random x ∈ Zφ(p). Choose random y ∈ Zφ(p).
a = gx mod p. b = gy mod p.
Send a to Bob. Send b to Alice.

ka = bx mod p. kb = ay mod p.

Figure 1: Diffie-Hellman Key Exchange Protocol.

The key exchange problem is for Alice and Bob to agree on a common random key k. One way
for this to happen is for Alice to choose k at random and then communicate it to Bob over a secure
channel. But that presupposes the existence of a secure channel. The Diffie-Hellman Key Exchange
protocol allows Alice and Bob to agree on a secret k without having prior secret information and
without giving an eavesdropper Eve any information about k. The protocol is given in Figure 1.
We assume that p and g are publicly known, where p is a large prime and g a primitive root of p.
Clearly, ka = kb since ka ≡ bx ≡ gxy ≡ ay ≡ kb (mod p). Hence, k = ka = kb is a common
key. In practice, Alice and Bob can use this protocol to generate a session key for a symmetric
cryptosystem, which then can subsequently use to exchange private information.

The security of this protocol relies on Eve’s presumed inability to compute k from a and b
and the public information p and g. This is sometime called the Diffie-Hellman problem and, like
discrete log, is believed to be intractable. Certainly the Diffie-Hellman problem is no harder that
discrete log, for if Eve could find the discrete log of a, then she would know x and could compute
ka the same way that Alice does. However, it is not known to be as hard as discrete log.

59 ElGamal Key Agreement

A variant of the above algorithm has Bob going first followed by Alice, as shown in Figure 2. The
difference here is that Bob completes his action at the beginning and no longer has to communicate

CPSC 467a Lecture Notes 11 (rev. 1) 3

Alice Bob

Choose random y ∈ Zφ(p).
b = gy mod p.
Send b to Alice.

Choose random x ∈ Zφ(p).
a = gx mod p.
Send a to Bob.

ka = bx mod p. kb = ay mod p.

Figure 2: ElGamal Variant of Diffie-Hellman Key Exchange.

with Alice. Alice, at a later time, can complete her half of the protocol and send a to Bob, at which
point Alice and Bob share a key.

This is just the scenario we want for public key cryptography. Bob generates a public key
(p, g, b) and a private key (p, g, y). Alice (or anyone who obtains Bob’s public key) can complete
the protocol by sending a to Bob. This is the idea behind the ElGamal public key cryptosystem.

Assume Alice knows Bob’s public key (p, g, b). To encrypt a message m, she first completes
her part of the protocol of Figure 2 to obtain numbers a and k. She then computes c = mk mod p
and sends the pair (a, c) to Bob. When Bob gets this message, he first uses a to complete his part of
the protocol and obtain k. He then computes m = k−1c mod p.

While the ElGamal cryptosystem uses the simple encryption function Ek(m) = mk mod p to
actually encode the message, it should be clear that any symmetric cryptosystem could be used at
that stage. An advantage of using a standard system such as AES is that long messages can be sent
following only a single key exchange.

Putting this all together gives us the following variant of the ElGamal public key cryptosystem.
As before, Bob generates a public key (p, g, b) and a private key (p, g, y). To encrypt a message m
to Bob, Alice first obtains Bob’s public key and chooses a random x ∈ Zφ(p). She next computes
a = gx mod p and k = bx mod p. She then computes

E(p,g,b)(m) = (a, Êk(m))

and sends it to Bob. Here, Ê is the encryption function of a specified symmetric cryptosystem. Bob
receives a pair (a, c). To decrypt, Bob computes k = ay mod p and the computes m = D̂k(c).

We remark that a new element has been snuck in here. The ElGamal cryptosystem and its
variants require Alice to generate a random number which is then used in the course of encryption.
Thus, the resulting encryption function is a random function rather than an ordinary function. A
random function is one that can return different values each time it is called, even for the same
arguments. The way to view a random function is that it specifies a probability distribution on the
output space that depends on its arguments.

In the case of E(p,g,b)(m) each message m has many different possible encryptions. An advan-
tage of such a probabilistic encryption system is that Eve can no longer use the public encryption
function to check a possible decryption, for even if she knows m, she cannot verify m is the correct
decryption of (a, c) simply by computing E(p,g,b)(m) as she could do for a deterministic cryptosys-

4 CPSC 467a Lecture Notes 11 (rev. 1)

tem such as RSA. Two disadvantages of course are that Alice must have a source of randomness in
order to use the system, and the ciphertext is longer than the corresponding plaintext.

60 Quadratic Residues, Squares, and Square Roots

An integer a is called a quadratic residue (or perfect square) modulo n if a ≡ b2 (mod n) for some
integer b. Such a b is said to be a square root of a modulo n. We let

QRn = {a ∈ Z∗n | a is a quadratic residue modulo n}.

be the set of quadratic residues in Z∗n, and we denote the set of non-quadratic residues in Z∗n by
QNRn = Z∗n −QRn.

61 Square Roots Modulo a Prime

Claim 1 For an odd prime p, every a ∈ QRp has exactly two square roots in Z∗p, and exactly 1/2 of
the elements of Z∗p are quadratic residues.

For example, take p = 11. The following table shows all of the elements of Z∗11 and their squares.

a a2 mod 11
1 1
2 4
3 9
4 5
5 3
6 = −5 3
7 = −4 5
8 = −3 9
9 = −2 4

10 = −1 1

Thus, we see that QR11 = {1, 3, 4, 5, 9} and QNR11 = {2, 6, 7, 8, 10}.

Proof: We now prove Claim 1. Consider the mapping sq : Z∗p → QRp defined by b 7→ b2 mod p.
We show that this is a 2-to-1 mapping from Z∗p onto QRp.

Let a ∈ QRp, and let b2 ≡ a (mod p) be a square root of a. Then −b is also a square root of a,
and b 6≡ −b (mod p) since p ∼| 2b. Hence, a has at least two distinct square roots (mod n). Now
let c be any square root of a.

c2 ≡ a ≡ b2 (mod p).

Then p | c2 − b2, so p | (c − b)(c + b). Since p is prime, then either p | (c − b), in which case c ≡ b
(mod p), or p | (c + b), in which case c ≡ −b (mod p). Hence c ≡ ±b (mod p). Since c was an
arbitrary square root of a, it follows that ±b are the only two square roots of a. Hence, sq() is a
2-to-1 function, and |QRp| = 1

2 |Z
∗
p| as desired.

	Primitive Roots
	Discrete Logarithm
	Diffie-Hellman Key Exchange
	ElGamal Key Agreement
	Quadratic Residues, Squares, and Square Roots
	Square Roots Modulo a Prime

