YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 12 (rev. 1)

Professor M. J. Fischer October 17, 2006

Lecture Notes 12

62 Square Roots Modulo the Product of Two Primes

Claim 1 Let $n = pq$ for p, q distinct odd primes. Then every $a \in QR_n$ has exactly four square *roots in* \mathbf{Z}_n^* , and exactly 1/4 of the elements of \mathbf{Z}_n^* are quadratic residues.

Proof: Consider the mapping sq : $\mathbb{Z}_n^* \to QR_n$ defined by $b \mapsto b^2 \mod n$. We show that this is a 4-to-1 mapping from \mathbf{Z}_n^* onto QR_n .

Let $a \in QR_n$ and let $b^2 \equiv a \pmod{n}$ be a square root of a. Then also $b^2 \equiv a \pmod{p}$ and $b^2 \equiv a \pmod{q}$, so b is a square root of a $p \mod{p}$ and b is a square root of a p . Conversely, if b_p is a square root of a (mod p) and b_q is a square root of a (mod q), then by the Chinese Remainder theorem, the unique number $b \in \mathbb{Z}_n^*$ such that $b \equiv b_p \pmod{p}$ and $b \equiv b_q$ \pmod{q} is a square root of a \pmod{n} . Since a has two square roots mod p and two square roots mod q, it follows that a has four square roots mod n. Thus, sq() is a 4-to-1 function, and $|\mathrm{QR}_n| = \frac{1}{4}$ $\frac{1}{4}|\mathbf{Z}_n^*|$ as desired.

63 Euler Criterion

There is a simple test due to Euler for whether a number is in QR_p for p prime.

Claim 2 *(Euler Criterion): An integer* a *is a non-trivial*[1](#page-0-0) *quadratic residue modulo* p *iff*

$$
a^{(p-1)/2} \equiv 1 \pmod{p}.
$$

Proof: Let $a \equiv b^2 \pmod{p}$ for some $b \not\equiv 0 \pmod{p}$. Then

$$
a^{(p-1)/2} \equiv (b^2)^{(p-1)/2} \equiv b^{p-1} \equiv 1 \pmod{p}
$$

by Euler's theorem, as desired.

For the other direction, suppose $a^{(p-1)/2} \equiv 1 \pmod{p}$. Clearly $a \not\equiv 0 \pmod{p}$. We show that a is a quadratic residue by finding a square root b modulo p .

Let g be a primitive root of p. Choose k so that $a \equiv g^k \pmod{p}$, and let $\ell = (p-1)k/2$. Then

$$
g^{\ell} \equiv g^{(p-1)k/2} \equiv (g^k)^{(p-1)/2} \equiv a^{(p-1)/2} \equiv 1 \pmod{p}.
$$

Because g is a primitive root, $g^{\ell} \equiv 1 \pmod{p}$ implies that ℓ is a multiple of $p - 1$. Hence, $(p-1) | (p-1)k/2$, from which we conclude that $2|k$ and $k/2$ is an integer. Let $b = g^{k/2}$. Then $b^2 \equiv g^k \equiv a \pmod{p}$, so *b* is a square root of *a* modulo *p*, as desired. \blacksquare

¹A non-trivial quadratic residue is one that is not equivalent to 0 (mod p).

64 Finding Square Roots Modulo Special Primes

The Euler criterion lets us test membership in QR_p for prime p, but it doesn't tell us how to find square roots. In case $p \equiv 3 \pmod{4}$, there is an easy algorithm for finding the square roots of any member of QR_p .

Claim 3 Let $p \equiv 3 \pmod{4}$, $a \in QR_p$. Then $b = a^{(p+1)/4}$ is a square root of a p .

Proof: Under the assumptions of the claim, $p + 1$ is divisible by 4, so $(p + 1)/4$ is an integer. Then

 $b^2 \equiv (a^{(p+1)/4})^2 \equiv a^{(p+1)/2} \equiv a^{1+(p-1)/2} \equiv a \cdot a^{(p-1)/2} \equiv a \cdot 1 \equiv a \pmod{p}$

by the Euler Criterion (Claim [2\)](#page-0-1).

65 Shank's Algorithm for Finding Square Roots Modulo Odd Primes

Let p be an odd prime. It can be written uniquely as $p = 2ⁿq + 1$, where n and q are integers and q is odd. (Note that n is simply the number of trailing 0's in the binary expansion of p, and q is what results when p is shifted right by n places.) Because p is odd, $p - 1$ is even, so $n \ge 1$. Section [64](#page-1-0) treats the special case where $n = 1$. We now present an algorithm due to D. Shanks^{[2](#page-1-1)} that works for all n.

Let p, n, q be as above. Assume a is a quadratic residue and u is a quadratic non-residue modulo p. (We can easily find u by choosing random elements of \mathbb{Z}_p^* and applying the Euler Criterion.) The goal is to find x such that $x^2 \equiv a \pmod{p}$.

Shank's Algorithm

Input: Odd prime *p*, quadratic residue $a \in QR_p$. Output: A square root of $a \pmod{p}$.

1. Let *n*, *q* satisfy $p = 2^n q$ and *q* odd. 2. Let u be a quadratic non-residue modulo p . 3. $k = n$

```
4. z = u^q5. x = a^{(q+1)/2}
```
6. $b = a^q$

```
7. while (b \not\equiv 1 \pmod{p}
```

```
8. let m be the least integer with b^{2^m} \equiv 1 \pmod{p}
```

```
9. t = z^{2^{k-m-1}}
```

```
10. z = t^2
```

```
11. b = bz
```

```
12. x = xt
```

```
13. k = m
```

```
14. }
```
15. return x

 \blacksquare

²Shanks's algorithm appeared in his paper, "Five number-theoretic algorithms", in Proceedings of the Second Manitoba Conference on Numerical Mathematics, Congressus Numerantium, No. VII, 1973, 51–70. Our treatment is taken from the paper by Jan-Christoph Schlage-Puchta", "On Shank's Algorithm for Modular Square Roots", *Applied Mathematics E-Notes, 5* (2005), 84–88.

The congruence $x^2 \equiv ab \pmod{p}$ is easily shown to be a loop invariant. Hence, if the program terminates, x is a square root of a .

To see why it terminates after at most n iterations of the loop, we look at the orders^{[3](#page-2-0)} of b and z (mod p) at the start of each loop iteration (before line 8) and show that $\text{ord}(b) < \text{ord}(z) = 2^k$.

On the first iteration, $k = n$, $z = u^q$, and $\text{ord}(z) = 2^n$. Clearly

$$
z^{2^n} \equiv u^{2^n q} \equiv u^{p-1} \equiv 1 \pmod{p},
$$

so $\text{ord}(z)|2^n$. By the Euler Criterion, since u is a non-residue, we have

$$
z^{2^{n-1}} \equiv u^{2^{n-1}q} \equiv u^{(p-1)/2} \not\equiv 1 \pmod{p}.
$$

Hence, ord $(z) = 2^n$. Using similar reasoning, since a is a quadratic residue, $b^{2^{n-1}} \equiv 1 \pmod{p}$, so $\operatorname{ord}(b)|2^{n-1}$. It follows that $\operatorname{ord}(b) < \operatorname{ord}(z) = 2^n \pmod{p}$.

Now, on each iteration, line 8 sets $m = \text{ord}(b)$ and line 9 sets $t = z^{2^{k-m-1}}$, so

$$
ord(t) = ord(z)/2^{k-m-1} = 2^{k}/2^{k-m-1} = 2^{m+1}.
$$

Line 10 sets $z = t^2$, so $\text{ord}(z) = \text{ord}(t)/2 = 2^m$. After line 11, $\text{ord}(b) < 2^m$. This because the old value of b and the new value of z both have order 2^m . Hence, both of those numbers raised to the power 2^{m-1} are -1 , so their product (the new value of b) raised to that same power is $(-1)^2 = 1$. Line 13 sets $k = m$ in preparation for the next iteration, and the loop invariant $\text{ord}(b) < \text{ord}(z) = 2^k$ is maintained. Moreover, $\text{ord}(b)$ is reduced at each iteration, so the loop must terminate after at most n iterations.

66 QR Probabilistic Cryptosystem

Let $n = pq$, p, q distinct odd primes. We can divide the numbers in \mathbb{Z}_n^* into four classes depending on their membership in QR_p and QR_q .^{[4](#page-2-1)} Let Q_n^{11} be those numbers that are quadratic residues mod both p and q; let Q_n^{10} be those numbers that are quadratic residues mod p but not mod q; let Q_n^{01} be those numbers that are quadratic residues mod q but not mod p; and let Q_n^{00} be those numbers that are neither quadratic residues mod p nor mod q. Under these definitions, $Q_n^{11} = QR_n$ and $Q_n^{00} \cup Q_n^{01} \cup Q_n^{10} = \text{QNR}_n.$

Fact Given $a \in Q_n^{00} \cup Q_n^{11}$, there is no known feasible algorithm for determining whether or not $a \in QR_n$ that gives the correct answer significantly more than 1/2 the time.

The Goldwasser-Micali cryptosystem is based on this fact. The public key consist of a pair $e = (n, y)$, where $n = pq$ for distinct odd primes p, q, and $y \in Q_n^{00}$. The private key consists of p. The message space is $\mathcal{M} = \{0, 1\}.$

To encrypt $m \in \mathcal{M}$, Alice chooses a random $a \in QR_n$. She does this by choosing a random member of \mathbb{Z}_n^* and squaring it. If $m = 0$, then $c = a \mod n$. If $m = 1$, then $c = ay \mod n$. The ciphertext is c.

It is easily shown that if $m = 0$, then $c \in Q_n^{11}$, and if $m = 1$, then $c \in Q_n^{00}$. One can also show that every $a \in Q_n^{11}$ is equally likely to be chosen as the ciphertext in case $m = 0$, and every $a \in Q_n^{00}$ is equally likely to be chosen as the ciphertext in case $m = 1$. Eve's problem of determining whether

³Recall that the order of an element g modulo p is the least integer k such that $g^k \equiv 1 \pmod{p}$.

⁴To be strictly formal, we classify $a \in \mathbb{Z}_n^*$ according to whether or not $(a \mod p) \in \mathbb{QR}_p$ and whether or not $(a \bmod q) \in \mathrm{QR}_q.$

c encrypts 0 or 1 is the same as the problem of distinguishing between membership in Q_n^{00} and Q_n^{11} , which by the above fact is believed to be hard. Anyone knowing the private key p , however, can use the Euler Criterion to quickly determine whether or not c is a quadratic residue mod p and hence whether $c \in Q_n^{11}$ or $c \in Q_n^{00}$, thereby determining m.

67 Legendre Symbol

Let p be an odd prime, a an integer. The *Legendre symbol* $\left(\frac{a}{n}\right)$ $\left(\frac{a}{p}\right)$ is a number in $\{-1, 0, +1\}$, defined as follows:

 $\int a$ p $=$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $+1$ if a is a non-trivial quadratic residue modulo p 0 if $a \equiv 0 \pmod{p}$ −1 if a is *not* a quadratic residue modulo p

By the Euler Criterion (see Claim [2\)](#page-0-1), we have

Theorem 1 *Let* p *be an odd prime. Then*

$$
\left(\frac{a}{p}\right) \equiv a^{\left(\frac{p-1}{2}\right)} \pmod{p}
$$

Note that this theorem holds even when $p|a$.

The Legendre symbol satisfies the following *multiplicative property*:

Fact Let p be an odd prime. Then

$$
\left(\frac{a_1a_2}{p}\right) = \left(\frac{a_1}{p}\right)\,\left(\frac{a_2}{p}\right)
$$

Not surprisingly, if a_1 and a_2 are both non-trivial quadratic residues, then so is a_1a_2 . This shows that the fact is true for the case that

$$
\left(\frac{a_1}{p}\right) = \left(\frac{a_2}{p}\right) = 1.
$$

More surprising is the case when neither a_1 nor a_2 are quadratic residues, so

$$
\left(\frac{a_1}{p}\right) = \left(\frac{a_2}{p}\right) = -1.
$$

In this case, the above fact says that the product a_1a_2 *is* a quadratic residue since

$$
\left(\frac{a_1 a_2}{p}\right) = (-1)(-1) = 1.
$$

Here's a way to see this. Let g be a primitive root of p. Write $a_1 \equiv g^{k_1} \pmod{p}$ and $a_2 \equiv g^{k_2}$ (mod p). Since a_1 and a_2 are not quadratic residues, it must be the case that k_1 and k_2 are both odd; otherwise $g^{k_1/2}$ would be a square root of a_1 , or $g^{k_2/2}$ would be a square root of a_2 . But then $k_1 + k_2$ is even since the sum of any two odd numbers is always even. Hence, $g^{(k_1+k_2)/2}$ is a square root of $a_1 a_2 \equiv g^{k_1+k_2} \pmod{p}$, so $a_1 a_2$ is a quadratic residue.