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Lecture Notes 12

62 Square Roots Modulo the Product of Two Primes

Claim 1 Let n = pq for p, q distinct odd primes. Then every a ∈ QRn has exactly four square
roots in Z∗n, and exactly 1/4 of the elements of Z∗n are quadratic residues.

Proof: Consider the mapping sq : Z∗n → QRn defined by b 7→ b2 mod n. We show that this is a
4-to-1 mapping from Z∗n onto QRn.

Let a ∈ QRn and let b2 ≡ a (mod n) be a square root of a. Then also b2 ≡ a (mod p)
and b2 ≡ a (mod q), so b is a square root of a (mod p) and b is a square root of a (mod q).
Conversely, if bp is a square root of a (mod p) and bq is a square root of a (mod q), then by the
Chinese Remainder theorem, the unique number b ∈ Z∗n such that b ≡ bp (mod p) and b ≡ bq

(mod q) is a square root of a (mod n). Since a has two square roots mod p and two square
roots mod q, it follows that a has four square roots mod n. Thus, sq() is a 4-to-1 function, and
|QRn| = 1

4 |Z
∗
n| as desired.

63 Euler Criterion

There is a simple test due to Euler for whether a number is in QRp for p prime.

Claim 2 (Euler Criterion): An integer a is a non-trivial1 quadratic residue modulo p iff

a(p−1)/2 ≡ 1 (mod p).

Proof: Let a ≡ b2 (mod p) for some b 6≡ 0 (mod p). Then

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 (mod p)

by Euler’s theorem, as desired.
For the other direction, suppose a(p−1)/2 ≡ 1 (mod p). Clearly a 6≡ 0 (mod p). We show that

a is a quadratic residue by finding a square root b modulo p.
Let g be a primitive root of p. Choose k so that a ≡ gk (mod p), and let ` = (p− 1)k/2. Then

g` ≡ g(p−1)k/2 ≡ (gk)(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p).

Because g is a primitive root, g` ≡ 1 (mod p) implies that ` is a multiple of p − 1. Hence,
(p − 1) | (p − 1)k/2, from which we conclude that 2|k and k/2 is an integer. Let b = gk/2. Then
b2 ≡ gk ≡ a (mod p), so b is a square root of a modulo p, as desired.

1A non-trivial quadratic residue is one that is not equivalent to 0 (mod p).
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64 Finding Square Roots Modulo Special Primes

The Euler criterion lets us test membership in QRp for prime p, but it doesn’t tell us how to find
square roots. In case p ≡ 3 (mod 4), there is an easy algorithm for finding the square roots of any
member of QRp.

Claim 3 Let p ≡ 3 (mod 4), a ∈ QRp. Then b = a(p+1)/4 is a square root of a (mod p).

Proof: Under the assumptions of the claim, p + 1 is divisible by 4, so (p + 1)/4 is an integer. Then

b2 ≡ (a(p+1)/4)2 ≡ a(p+1)/2 ≡ a1+(p−1)/2 ≡ a · a(p−1)/2 ≡ a · 1 ≡ a (mod p)

by the Euler Criterion (Claim 2).

65 Shank’s Algorithm for Finding Square Roots Modulo Odd Primes

Let p be an odd prime. It can be written uniquely as p = 2nq + 1, where n and q are integers and q
is odd. (Note that n is simply the number of trailing 0’s in the binary expansion of p, and q is what
results when p is shifted right by n places.) Because p is odd, p − 1 is even, so n ≥ 1. Section 64
treats the special case where n = 1. We now present an algorithm due to D. Shanks2 that works for
all n.

Let p, n, q be as above. Assume a is a quadratic residue and u is a quadratic non-residue modulo
p. (We can easily find u by choosing random elements of Z∗p and applying the Euler Criterion.) The
goal is to find x such that x2 ≡ a (mod p).

Shank’s Algorithm
Input: Odd prime p, quadratic residue a ∈ QRp.
Output: A square root of a (mod p).

1. Let n, q satisfy p = 2nq and q odd.
2. Let u be a quadratic non-residue modulo p.
3. k = n
4. z = uq

5. x = a(q+1)/2

6. b = aq

7. while (b 6≡ 1 (mod p)) {
8. let m be the least integer with b2m ≡ 1 (mod p)
9. t = z2k−m−1

10. z = t2

11. b = bz
12. x = xt
13. k = m
14. }
15. return x

2Shanks’s algorithm appeared in his paper, “Five number-theoretic algorithms”, in Proceedings of the Second Man-
itoba Conference on Numerical Mathematics, Congressus Numerantium, No. VII, 1973, 51–70. Our treatment is taken
from the paper by Jan-Christoph Schlage-Puchta”, “On Shank’s Algorithm for Modular Square Roots”, Applied Mathe-
matics E-Notes, 5 (2005), 84–88.
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The congruence x2 ≡ ab (mod p) is easily shown to be a loop invariant. Hence, if the program
terminates, x is a square root of a.

To see why it terminates after at most n iterations of the loop, we look at the orders3 of b and z
(mod p) at the start of each loop iteration (before line 8) and show that ord(b) < ord(z) = 2k.

On the first iteration, k = n, z = uq, and ord(z) = 2n. Clearly

z2n ≡ u2nq ≡ up−1 ≡ 1 (mod p),

so ord(z) |2n. By the Euler Criterion, since u is a non-residue, we have

z2n−1 ≡ u2n−1q ≡ u(p−1)/2 6≡ 1 (mod p).

Hence, ord(z) = 2n. Using similar reasoning, since a is a quadratic residue, b2n−1 ≡ 1 (mod p),
so ord(b) |2n−1. It follows that ord(b) < ord(z) = 2n (mod p).

Now, on each iteration, line 8 sets m = ord(b) and line 9 sets t = z2k−m−1
, so

ord(t) = ord(z)/2k−m−1 = 2k/2k−m−1 = 2m+1.

Line 10 sets z = t2, so ord(z) = ord(t)/2 = 2m. After line 11, ord(b) < 2m. This because
the old value of b and the new value of z both have order 2m. Hence, both of those numbers
raised to the power 2m−1 are −1, so their product (the new value of b) raised to that same power
is (−1)2 = 1. Line 13 sets k = m in preparation for the next iteration, and the loop invariant
ord(b) < ord(z) = 2k is maintained. Moreover, ord(b) is reduced at each iteration, so the loop
must terminate after at most n iterations.

66 QR Probabilistic Cryptosystem

Let n = pq, p, q distinct odd primes. We can divide the numbers in Z∗n into four classes depending
on their membership in QRp and QRq.4 Let Q11

n be those numbers that are quadratic residues mod
both p and q; let Q10

n be those numbers that are quadratic residues mod p but not mod q; let Q01
n

be those numbers that are quadratic residues mod q but not mod p; and let Q00
n be those numbers

that are neither quadratic residues mod p nor mod q. Under these definitions, Q11
n = QRn and

Q00
n ∪Q01

n ∪Q10
n = QNRn.

Fact Given a ∈ Q00
n ∪ Q11

n , there is no known feasible algorithm for determining whether or not
a ∈ QRn that gives the correct answer significantly more than 1/2 the time.

The Goldwasser-Micali cryptosystem is based on this fact. The public key consist of a pair
e = (n, y), where n = pq for distinct odd primes p, q, and y ∈ Q00

n . The private key consists of p.
The message space is M = {0, 1}.

To encrypt m ∈ M, Alice chooses a random a ∈ QRn. She does this by choosing a random
member of Z∗n and squaring it. If m = 0, then c = a mod n. If m = 1, then c = ay mod n. The
ciphertext is c.

It is easily shown that if m = 0, then c ∈ Q11
n , and if m = 1, then c ∈ Q00

n . One can also show
that every a ∈ Q11

n is equally likely to be chosen as the ciphertext in case m = 0, and every a ∈ Q00
n

is equally likely to be chosen as the ciphertext in case m = 1. Eve’s problem of determining whether
3Recall that the order of an element g modulo p is the least integer k such that gk ≡ 1 (mod p).
4To be strictly formal, we classify a ∈ Z∗n according to whether or not (a mod p) ∈ QRp and whether or not

(a mod q) ∈ QRq .
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c encrypts 0 or 1 is the same as the problem of distinguishing between membership in Q00
n and Q11

n ,
which by the above fact is believed to be hard. Anyone knowing the private key p, however, can use
the Euler Criterion to quickly determine whether or not c is a quadratic residue mod p and hence
whether c ∈ Q11

n or c ∈ Q00
n , thereby determining m.

67 Legendre Symbol

Let p be an odd prime, a an integer. The Legendre symbol
(

a
p

)
is a number in {−1, 0,+1}, defined

as follows: (
a

p

)
=


+1 if a is a non-trivial quadratic residue modulo p

0 if a ≡ 0 (mod p)
−1 if a is not a quadratic residue modulo p

By the Euler Criterion (see Claim 2), we have

Theorem 1 Let p be an odd prime. Then(
a

p

)
≡ a( p−1

2 ) (mod p)

Note that this theorem holds even when p |a.
The Legendre symbol satisfies the following multiplicative property:

Fact Let p be an odd prime. Then (
a1a2

p

)
=

(
a1

p

) (
a2

p

)
Not surprisingly, if a1 and a2 are both non-trivial quadratic residues, then so is a1a2. This shows
that the fact is true for the case that (

a1

p

)
=

(
a2

p

)
= 1.

More surprising is the case when neither a1 nor a2 are quadratic residues, so(
a1

p

)
=

(
a2

p

)
= −1.

In this case, the above fact says that the product a1a2 is a quadratic residue since(
a1a2

p

)
= (−1)(−1) = 1.

Here’s a way to see this. Let g be a primitive root of p. Write a1 ≡ gk1 (mod p) and a2 ≡ gk2

(mod p). Since a1 and a2 are not quadratic residues, it must be the case that k1 and k2 are both
odd; otherwise gk1/2 would be a square root of a1, or gk2/2 would be a square root of a2. But then
k1 + k2 is even since the sum of any two odd numbers is always even. Hence, g(k1+k2)/2 is a square
root of a1a2 ≡ gk1+k2 (mod p), so a1a2 is a quadratic residue.
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