YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
CPSC 467a: Cryptography and Computer Security
Handout \#8
Professor M. J. Fischer

Problem Set 3

Due on Wednesday, October 22, 2008.
In the problems below, "textbook" refers to Douglas R. Stinson, Cryptography: Theory and Practice, Third Edition, Chapman \& Hall/CRC, 2006.

Problem 1: Feistel Network

Textbook, problem 3.2.

Problem 2: DES Complementation Property

Textbook, problem 3.3.
Problem 3: DES S-box S_{4}
Textbook, problem 3.11(a). [Omit part (b).]

Problem 4: Practice with mod

Read pages 3-4 of textbook and then work the following:
(a) Textbook, problem 1.1.
(b) Textbook, problem 1.2.
(c) Textbook, problem 1.3.
(d) Textbook, problem 1.4.

Problem 5: Extended Euclidean Algorithm

Textbook, problem 5.3. Show your work.

Problem 6: Linear Diophantine Equations

Textbook, problem 5.4. Show your work.

Problem 7: RSA Encryption

[This is problem 6.8.2 from Trapp \& Washington, "Introduction to Cryptography with Coding Theory, Second Edition", Pearson Prentice Hall, 2006.]
Suppose your RSA modulus is $n=55=5 \times 11$ and your encryption exponent is $e=3$.
(a) Find the decryption modulus d.
(b) Assume that $\operatorname{gcd}(m, 55)=1$. Show that if $c \equiv m^{3}(\bmod 55)$ is the ciphertext, then the plaintext is $m \equiv c^{d}(\bmod 55)$. Do not quote the fact that RSA decryption works. That is what you are showing in this specific case.

