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Solution to Problem Set 2
In this problem set, we consider a variant of the Caesar cipher which we call the “Happy” cipher
(named after the venerable “Happy Hacker” of CPSC 223 fame). Happy (E,D) is defined as
follows: Let X1 = {0, . . . , 12} and X2 = {13, . . . , 25}. LetM = C = K = X = X1 ∪X2, and
let n = |X| = 26. Define

Ek(m) =


(m + k) mod 13 if k ∈ X1 ∧m ∈ X1

m if k ∈ X1 ∧m ∈ X2

m if k ∈ X2 ∧m ∈ X1

((m + k) mod 13) + 13 if k ∈ X2 ∧m ∈ X2

We also consider Double Happy (E2, D2). Here, K2 = K ×K, and E2
(k1,k2) = Ek2(Ek1(m)).

Problem 1: Happy Encryption (5 points)

Encrypt the plaintext “i am a secret message” using Happy with key k = 3. (As usual, we will
ignore spaces.)

Solution:
m = “i am a secret message”;
k = 3;
c = “l dc d shfrht chssdjh”.

Problem 2: Happy Decryption (5 points)

Describe the Happy decryption function Dk(c).

Solution:

Dk(c) =


(c− k) mod 13 if k ∈ X1 ∧ c ∈ X1

c if k ∈ X1 ∧ c ∈ X2

c if k ∈ X2 ∧ c ∈ X1

((c− k) mod 13) + 13 if k ∈ X2 ∧ c ∈ X2

(1)

Problem 3: Security (10 points)

(a) Is Happy information-theoretically secure? Why or why not?

(b) Is Double Happy information-theoretically secure? Why or why not?

Solution:
(a) No. Before observing any cipher text, the probability of the plain text m being a specific

letter m0 is Prob[m = m0] = 1
26 . After observing the cipher text, say c = m0, the probability of

the plain text m = m0 becomes Prob[m = m0 | c = m0] = 14
26 . Assuming m0 = 23, Figure 1
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(a) Prior probability
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(b) Posterior probability

Figure 1: Probability distributions.

illustrates the plain text prior probability distribution and posterior probability distribution after we
learn the cipher text c = m0 = 23.

(b) Similar to (a).

Problem 4: Equivalent Key Pairs (10 points)

Suppose m0 = c0 = 4.

(a) Find all key pairs (k, k′) such that E2
(k,k′)(m0) = c0.

(b) Do all such key pairs give rise to the same function E2
(k,k′)? That is, if E2

(k̂,k̂′)
(m0) =

E2
(k,k′)(m0) = c0, does E2

(k̂,k̂′)
(m) = E2

(k,k′)(m) for all m ∈M? Why or why not?

Solution:
(a) Note that m0, k0 ∈ X1. There are four different cases:

• 1) {(k, k
′
) | k, k

′ ∈ X2}

• 2) {(k, k
′
) | k = 0, k

′ ∈ X2}

• 3) {(k, k
′
) | k′

= 0, k ∈ X2}

• 4) {(k, k
′
) | k, k

′ ∈ X1, (k + k
′
) mod13 = 0}

(b) No. For example, if m = 13, then E2
13,14(13) = 14 (case 1), but E2

1,12(13) = 13 (case 4).

Problem 5: Group Property (10 points)

Is Happy a group? Why or why not?

Solution:
No. group property requires that for any key pairs k1, k2 ∈ X , there is always a single key

k ∈ X , such that Ek1,k2(m) = Ek(m) for any m ∈ X . Taking k1 = 1, k2 = 14 for example, now
we will show that ∀k, there ∃m such that Ek1,k2(m) 6= Ek(m).

• k ∈ X1: E1,14(13) = 14, but Ek(13) = 13
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• k ∈ X2: E1,14(0) = 1, but Ek(0) = 0

The following problems ask you to compute probabilities. You may do so either analytically (if
you’re facile with combinatorial counting techniques) or experimentally by writing a program to
simulate 1000 random trials and reporting the fraction of times that the desired result is obtained.
Either way, you should show your work – analytic derivation, or program and simulation results.

Problem 6: Birthday Problem (20 points)

Suppose u1, . . . , u6 and v1, . . . , v6 are chosen uniformly and independently at random from X (so
duplicates are possible. Find the probability that {u1, . . . , u6} ∩ {v1, . . . , v6} 6= ∅. (Note that
6 = d

√
n e.)

Solution:
We first calculate the probability that sets {ui} and {vi} do not have intersection and analyze

this situation case by case as follows:
1) 6 members of set {ui} are identical, (i.e., the form 6), {vi} choose from the remaining 25

letters:
p1 = [1× (

1
26

)5]× [(
25
26

)6] (2)

2) 5 members of set {ui} are identical, (i.e., the form 5:1), {vi} choose from the remaining 24
letters:

p2 =

(
6
5

)
× [1× (

1
26

)4 × 25
26

]× [(
24
26

)6] (3)

3) 4 members of set {ui} are identical, the rest 2 members themselves are identical, (i.e., the
form 4:2), {vi} choose from the remaining 24 letters:

p3 =

(
6
4

)
× [1× (

1
26

)3 × 25
26
× 1

26
]× [(

24
26

)6] (4)

4) 4 members of set {ui} are identical, the rest 2 members themselves are different, (i.e., the
form 4:1:1), {vi} choose from the remaining 23 letters:

p4 =

(
6
4

)
× [1× (

1
26

)3 × 25
26
× 24

26
]× [(

23
26

)6] (5)

5) 3 members of set {ui} are identical, the rest 3 members themselves are identical, (i.e., the
form 3:3), {vi} choose from the remaining 24 letters:

p5 =

(
6
3

)
× 1

2!
× [1× (

1
26

)2 × 25
26
× (

1
26

)2]× [(
24
26

)6] (6)

6) 3 members of set {ui} are identical, other 2 members themselves are identical, the last one is
different (i.e., the form 3:2:1), {vi} choose from the remaining 23 letters:

p6 =

(
6
3

)
×
(

3
2

)
× [1× (

1
26

)2 × 25
26
× 1

26
× 24

26
]× [(

23
26

)6] (7)
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7) 3 members of set {ui} are identical, the rest 3 members themselves are all different, (i.e., the
form 3:1:1:1), {vi} choose from the remaining 22 letters:

p7 =

(
6
3

)
× [1× (

1
26

)2 × 25
26
× 24

26
× 23

26
]× [(

22
26

)6] (8)

8) {ui} are in the form of 2:2:2, {vi} choose from the remaining 23 letters:

p8 =

(
6
2

)
×
(

4
2

)
× 1

3!
× [1× 1

26
× 25

26
× 1

26
× 24

26
× 1

26
]× [(

23
26

)6] (9)

9) {ui} are in the form of 2:2:1:1, {vi} choose from the remaining 22 letters:

p9 =

(
6
2

)
×
(

4
2

)
× 1

2!
× [1× 1

26
× 25

26
× 1

26
× 24

26
× 23

26
]× [(

22
26

)6] (10)

10) {ui} are in the form of 2:1:1:1:1, {vi} choose from the remaining 21 letters:

p10 =

(
6
2

)
× [1× 1

26
× 25

26
× 24

26
× 23

26
× 22

26
]× [(

21
26

)6] (11)

11) All members of {ui} are different, (i.e., the form of 1:1:1:1:1:1), {vi} choose from the
remaining 20 letters:

p11 = [1× 25
26
× 24

26
× 23

26
× 22

26
× 21

26
]× [(

20
26

)6] (12)

Then the probability of non-empty intersection between ui and vi is:

p = 1−
11∑

j=1

pj ≈ 0.752486 (13)

The above calculation is pretty tedious, but it helps to understand the detailed analysis. We can
also use Monte Carlo simulation to obtain the success probabilities.

We can make use of the randRange() function we constructed in PS1 to generate a 6 random
numbers ui and another 6 random numbers vi. Then we check each pair of (ui, vi) one by one to
see whether there is a match. If there is such match, the counter increases by 1. In each experiment
we run 1, 000, 000 trials and calculates the non-empty intersection probability. Then we run the
experiments for 100 times and calculate the probability. The result is shown in Figure 2. The
average probability is about 75.25%.

Problem 7: Birthday Attack on Double Happy (40 points)

Assume Alice chooses a random key pair (k0, k
′
0) and a random message m and computes c =

E2
(k0,k′

0)(m) using Double Happy. Eve learns the plaintext-ciphertext pair (m, c) and then carries
out the Birthday Attack for m ∈M and c ∈ C as follows:

• She chooses k1, . . . , k6 uniformly at random from K and computes ui = Eki
(m) for i =

1, . . . , 6.

• She chooses k′
1, . . . , k

′
6 uniformly at random from K and computes vj = Dk′

j
(c) for j =

1, . . . , 6.
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Figure 2: Probability of non-empty intersection.

• If {u1, . . . , u6} ∩ {v1, . . . , v6} 6= ∅, we say the Birthday Attack succeeds in producing a
candidate key pair. In that case, Eve obtains the candidate key pair (k, k′) = (ki, k

′
j), where

(i, j) is the lexicographically smallest pair such that ui = vj .

• If a candidate key pair (k, k′) is produced and (k, k′) can be used to decrypt any message
Alice might send using her key, that is, if D2

(k,k′)(E
2
(k0,k′

0)(m)) = m for all m ∈M, then we
say the Birthday Attack succeeds in breaking Double Happy.

(a) Find the probability that the Birthday Attack succeeds in producing a candidate key pair, and
compare your result with your answer to problem 6.

(b) Find the probability that the Birthday Attack succeeds in breaking Double Happy.

Solution:
(a) To successfully produce a candidate key pair, it means that the Birthday Attack succeeds in

finding a key pair that decrypts a known plaintext-ciphertext pair (m, c).
We still make use of the randRange() function to generate a random plain letter m and a key

pair (k0, k
′
0). We use this key pair to encrypt m and get c. Now we need to generate 6 random keys

ki and another 6 random keys k
′
i. Use ki to encrypt m we get the set of {ui} and use k

′
i to decrypt

c we get the set of {vi}. Then if there is a match between any pair of (ui, vi), the counter increases
by 1. In each experiment we run 1, 000, 000 trials and calculates the probability of succeeding
in producing a candidate key pair. Then we run the experiments for 100 times and calculate the
probability. The result is shown in Figure 3. The average probability is about 75.29%.

(b) To successfully break Double Happy, it means that the candidate key can decrypts all the
cipertext produced from any m ∈ X with the key pair that Alice owns. Due to the special property
of Double Happy, it is suffice to show that if the candidate key pair can decrypts one plaintext-
ciphertext pair (m1, c1) ∈ X1 and another plaintext-ciphertext pair (m2, c2) ∈ X2, it can break the
entire encryption system.

Therefore, we make use of the randRange() function to generate two random plain letter m1 ∈
X1 and m2 ∈ X2, and a key pair (k0, k

′
0). We use this key pair to encrypt m1, m2 and get c1, c2.

Now we need to generate 6 random keys ki and another 6 random keys k
′
i. Use ki to encrypt m we

get the set of {ui} and use k
′
i to decrypt c we get the set of {vi}. By finding the match between

any pair of (ui, vi), we find the candidate key pair that can decrypts (m1, c1). If we also succeed in
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decrypting (m2, c2) with the same candidate key pair, we have succeeded in producing a candidate
key pair that breaks Double Happy. In each experiment we run 1, 000, 000 trials and calculates the
probability of succeeding in breaking Double Happy. Then we run the experiments for 100 times
and calculate the probability. The result is shown in Figure 3. The average probability is about
13.53%.
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Figure 3: Birthday attack on Double Happy.
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