YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security

Professor M. J. Fischer

Study Guide for Midterm Examination

1 Exam Coverage

The midterm examination will cover the topics of the first 11 lectures of the course (through October 13). These topics are presented in several different formats:

- 1. In-person class lectures.
- 2. Written lecture notes, available on the course web site.
- 3. Written handouts, available on the course web site. I especially recommend handout 5 for reviewing number theory.
- 4. Textbook (Stinson), relevant sections from chapters 1–5. Roughly speaking, this is all of chapter 1, sections 2.1–2.3, 2.7 from chapter 2, sections 3.1, 3.2, 3.5, 3.7 from chapter 3, a little bit about MAC's (message authentication codes) from section 4.1 and 4.4, and sections 5.1, 5.2.1, 5.2.3, 5.3, 5.7.1.
- 5. Other resources available in the library and on the web.
- 6. Problem sets and solutions.

2 Review Outline

Below I give a list of topics, concepts, definitions, theorems, algorithms, and protocols that we have covered and that I expect you to know. This list is not inclusive, as I'm sure I have missed some things.

- 1. Secret-message transmission problem.
 - (a) Model.
 - Alice.
 - Bob.
 - Eve (passive eavesdropper).
 - Mallory (active eavesdropper).
 - Plaintext.
 - Ciphertext.
 - Key.
 - Encryption function.
 - Decryption function.
 - (b) Attacks.
 - Known plaintext.

- Chosen plaintext.
- Known ciphertext.
- Chosen ciphertext.
- (c) Breaking system.
 - Finding key.
 - Decrypting ciphertext.
 - Extracting partial information from ciphertext.
- 2. Information security in the real world.
- 3. Classical cryptography.
 - (a) Cryptosystems.
 - Caeser cipher.
 - One-time pad.
 - Simple XOR system.
 - Monoalphabetic cipher.
 - Playfair cipher.
 - Hill cipher.
 - Polyalphabetic cipher.
 - Transposition techniques.
 - Rotor machines.
 - Steganography.
 - (b) Security.
 - Kerckhoffs's assumption (that only key is secret).
 - Statistical inference.
 - Brute force attack.
 - Redundancy.
 - Information-theoretic security.
 - (c) Stream cipher.
 - Keystream generator.
 - Next-state generator.
 - (d) Block cipher.
 - Block size.
 - Padding.
 - Chaining modes.
 - Electronic Codebook Mode (ECB).
 - Cipher Block Chaining Mode (CBC).
 - Cipher-Feedback Mode (CFB).
 - Output Feedback Mode (OFB).
 - Propagating Cipher-Block Chaining Mode (PCBC).
 - Recoverability from lost/damaged ciphertext blocks.

- 4. Data Encryption Standard (DES).
 - (a) Feistel network.
 - (b) Block size.
 - (c) Key size.
 - (d) Subkey.
 - (e) S-box.
 - (f) Rounds.
 - (g) Decryption.
 - (h) Group property of a cryptosystem.
 - (i) Double encryption.
 - (j) Birthday paradox.
- 5. Message Authentication Codes (MACs).
 - (a) Definition.
 - (b) Need for MACs; why encryption isn't enough.
 - (c) MACs from DES and other block ciphers.
- 6. Asymmetric cryptosystems.
 - (a) Definition and requirements.
 - (b) Public key model.
 - (c) Need for resistence against chosen plaintext attack.
 - (d) Man-in-the-middle attack (whereby Alice is fooled into thinking that Mallory's public key really belongs to Bob).
- 7. RSA.
 - (a) Components.
 - Modulus.
 - Encryption key.
 - Decryption key.
 - Encryption function.
 - Decryption function.
 - (b) Algorithms needed.
 - Primality testing. [Know why needed, but actual method not covered on midterm.]
 - Finding modular inverse.
 - Fast modular exponentiation.
 - (c) Theoretical basis.
 - Prime number theorem. [Not covered on midterm.]
 - Existence of modular inverse.
 - Proof that decryption function is inverse of encryption function.
 - (d) Computational efficiency.

- (e) Security properties.
 - Factoring problem.
 - Computing $\phi(n)$ given factorization of n.
 - Factoring n given $\phi(n)$.
 - Factoring *n* given public and private keys. [Not covered on midterm.]
- (f) Hybrid system.
 - Use RSA for secure transmission of random session key.
 - Use symmetric cryptosystem for body of message.
- 8. Algebra.
 - (a) Groups.
 - (b) Abelian group
 - (c) Subgroups.
 - (d) Cyclic group, generator, and order of an element.
 - (e) Order of subgroup divides order of group.
- 9. Number theory.
 - (a) Modular arithmetic.
 - Divides (a|b).
 - Division theorem: $a = bq + r, 0 \le r < b$.
 - The remainder operator " $a \mod n$ "
 - The congruence relation $a \equiv b \pmod{n}$
 - \mathbf{Z}_n .
 - Computing in \mathbf{Z}_n for large n.
 - Fast modular exponentiation.
 - (b) \mathbf{Z}_n^*
 - Relatively prime pairs of numbers.
 - Euler's totient function $\phi(n)$
 - Euler's theorem and Fermat's little theorem.
 - Consequence: $x \equiv y \pmod{\phi(n)}$ implies $a^x \equiv a^y \pmod{n}$.
 - Greatest common divisor (gcd).
 - Euclidean gcd algorithm.
 - Diophantine equations and modular inverses.
 - Extended Euclidean algorithm.