
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Handout #18
Professor M. J. Fischer December 2, 2008

Problem Set 7
Due before midnight on Friday, December 12, 2008.

Problem 1: Zero Knowledge

[The following is a modification of Problem 14-3, Trapp and Washington, Introduction to Cryptog-
raphy with Coding Theory, Second Edition, Pearson Prentice Hall, 2006.]

Naive Nelson thinks he understands zero-knowledge protocols. He wants to prove to Victor that
he knows the factorization of n (which equals pq for two large primes p and q) without revealing
this factorization to Victor or anyone else. Nelson devises the following procedure: Victor chooses
a random integer x mod n, computes y = x2 mod n, and sends y to Nelson. Nelson computes a
square root s of y (mod n) and sends s to Victor. Victor checks that s2 ≡ y (mod n). Victor
repeats this 20 times.

(a) Describe how Nelson computes s. You may assume that p and q are ≡ 3 (mod 4).

(b) Describe why successful completion of this protocol convinces Victor that Nelson really does
know the factorization of n (subject to a very small probability of error). In particular, show
that any feasible algorithm able to satisfy Victor’s queries can be converted into a feasible
probabilistic algorithm for printing out the factors of n.

(c) Explain how, with high probability of success, Victor can use this protocol to find the factor-
ization of n. (Therefore, this is not a zero-knowledge protocol.)

(d) Suppose Eve is eavesdropping and hears the values of each y and s. Is it likely that Eve
obtains any useful information? (Assume no value of y repeats.)

Problem 2: Indistinguishability

Happy Hacker wanted a good source of random bits, so he downloaded a cryptographically secure
pseudorandom sequence generator G(s) from the Internet. G maps seeds of length n to binary
sequences of length `. Knowing the importance of seeding the generator with truly random bits,
he arranged to obtain the seed s from /dev/random. Having done so, he couldn’t see any good
reason to “waste” the random bits in s, so he decided to output the string s · G(s), giving n + `
output bits in all. In other words, he built a new pseudorandom number generator G′(s) = s ·G(s).

Unfortunately, G′(s) is not cryptographically secure, even when seeded properly with a truly
random seed s. Explain why, and describe a judge J that can distinguish the distribution G′(S)
from U . Here, S is the uniform distribution over the seed space, and U is the uniform distribution
over binary strings of length n + `.

Problem 3: Shamir Secret Splitting

Let (x1, y1), . . . , (x5, y5) be shares of a secret s in a (2, 5) secret splitting scheme over Zp. Assume
one of the shares has been corrupted and does not lie on the dealer’s polynomial, but nobody knows
which the bad share is.

2 Problem Set 7

For each value of k = 1, . . . , 5, answer the following questions with respect to an arbitrary
subset R of shares, where |R| = k.

(a) Can it be determined if R contains a bad share? If so, describe how. If not, explain why not.

(b) If it can be determined that R contains a bad share, can the bad share be identified? If so,
describe how. If not, explain why not.

(c) Can the secret s be recovered from R (despite the possible presence of one bad share in R)?
If so, describe how. If not, explain why not.
[Note that you cannot assume that it is necessary to identify the bad share in order to recon-
struct the secret; there might well be a procedure that always comes up with the correct s
even without knowing which of the shares is bad.]

	Zero Knowledge
	Indistinguishability
	Shamir Secret Splitting

