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Lecture Notes 11

45 Generating RSA Encryption and Decryption Exponents

We showed in section 44 (lecture notes 10) that RSA decryption works for m ∈ Z∗
n if e and d are

chosen so that
ed ≡ 1 (mod φ(n)), (1)

that is, d is e−1 (the inverse of e) in Z∗
φ(n).

We now turn to the question of how Alice chooses e and d to satisfy (1). One way she can do
this is to choose a random integer e ∈ Z∗

φ(n) and then solve (1) for d. We will show how to solve
for d in Sections 46 and 47 below.

However, there is another issue, namely, how does Alice find random e ∈ Z∗
φ(n)? If Z∗

φ(n) is
large enough, then she can just choose random elements from Zφ(n) until she encounters one that
also lies in Z∗

φ(n). A candidate element e lies in Z∗
φ(n) if gcd(e, φ(n)) = 1, which can be computed

efficiently using Algorithm 42.2 (Euclidean algorithm).1

But how large is large enough? If φ(φ(n)) (the size of Z∗
φ(n)) is much smaller than φ(n) (the

size of Zφ(n)), Alice might have to search for a long time before finding a suitable candidate for e.
In general, Z∗

m can be considerably smaller than m. For example, if m = |Zm| = 210, then
|Z∗
m| = 48. In this case, the probability that a randomly-chosen element of Zm falls in Z∗

m is only
48/210 = 8/35 = 0.228 . . . .

The following theorem provides a crude lower bound on how small Z∗
m can be relative to the

size of Zm that is nevertheless sufficient for our purposes.

Theorem 1 For all m ≥ 2,
|Z∗
m|
|Zm|

≥ 1
1 + blog2mc

.

Proof: Write m in factored form as m =
∏t
i=1 p

ei
i , where pi is the ith prime that divides m and

ei ≥ 1. Then φ(m) =
∏t
i=1(pi − 1)pei−1

i , so

|Z∗
m|
|Zm|

=
φ(m)
m

=
∏t
i=1(pi − 1)pei−1

i∏t
i=1 p

ei
i

=
t∏
i=1

(
pi − 1
pi

)
. (2)

To estimate the size of
∏t
i=1(pi − 1)/pi, note that (pi − 1)/pi ≥ i/(i + 1). This follows since

(x− 1)/x is monotonic increasing in x, and pi ≥ i+ 1. Then

t∏
i=1

(
pi − 1
pi

)
≥

t∏
i=1

(
i

i+ 1

)
=

1
2
· 2
3
· 3
4
· · · t

t+ 1
=

1
t+ 1

. (3)

Clearly t ≤ blog2mc since 2t ≤
∏t
i=1 pi ≤ m and t is an integer. Combining this fact with

equations (2) and (3) gives the desired result.
1φ(n) itself is easily computed for an RSA modulus n = pq since φ(n) = (p− 1)(q − 1).

http://zoo.cs.yale.edu/classes/cs467/2008f/attach/ln10.html
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For n a 1024-bit integer, φ(n) < n < 21024. Hence, log2(φ(n)) < 1024, so blog2(φ(n))c ≤ 1023.
By Theorem 1, the fraction of elements in Zφ(n) that also lie in Z∗

φ(n) is at least 1/1024. Therefore,
the expected number of random trials before Alice finds a number in Z∗

φ(n) is provably at most 1024
and is most likely much smaller.

46 Diophantine equations and modular inverses

Now that Alice knows how to choose e ∈ Z∗
φ(n), how does she find d? That is, how does she solve

(1)? Note that d, if it exists, is a multiplicative inverse of e (mod n), that is, a number that, when
multiplied by e, gives 1 (mod n).

Equation (1) is an instance of the general Diophantine equation

ax+ by = c (4)

Here, a, b, c are given integers. A solution consists of integer values for the unknowns x and y. To
put (1) into this form, we note that ed ≡ 1 (mod φ(n)) iff ed+uφ(n) = 1 for some integer u. This
is seen to be an equation in the form of (4) where the unknowns x and y are d and u, respectively,
and the coefficients a, b, c are e, φ(n), 1, respectively.

47 Extended Euclidean algorithm

It turns out that (4) is closely related to the greatest common divisor, for it has a solution iff
gcd(a, b) | c. It can be solved by a process akin to the Euclidean algorithm, which we call the
Extended Euclidean algorithm. Here’s how it works.

The algorithm generates a sequence of triples of numbers Ti = (ri, ui, vi), each satisfying the
invariant

ri = aui + bvi ≥ 0. (5)

The first triple T1 is (a, 1, 0) if a ≥ 0 and (−a,−1, 0) if a < 0. The second trip T2 is (b, 0, 1) if
b ≥ 0 and (−b, 0,−1) if b < 0.

The algorithm generates Ti+2 from Ti and Ti+1 much the same as the Euclidean algorithm
generates (a mod b) from a and b. More precisely, let qi+1 = bri/ri+1c. Then Ti+2 = Ti −
qi+1Ti+1, that is,

ri+2 = ri − qi+1ri+1

ui+2 = ui − qi+1ui+1

vi+2 = vi − qi+1vi+1

Note that ri+2 = (ri mod ri+1), 2 so one sees that the sequence of generated pairs (r1, r2), (r2, r3),
(r3, r4), . . . , is exactly the same as the sequence of pairs generated by the Euclidean algorithm. Like
the Euclidean algorithm, we stop when rt = 0. Then rt−1 = gcd(a, b), and from (5) it follows that

gcd(a, b) = aut−1 + bvt−1 (6)

Returning to equation (4), if c = gcd(a, b), then x = ut−1 and y = vt−1 is a solution. If c is a
multiple of gcd(a, b), then c = k gcd(a, b) for some k and x = kut−1 and y = kvt−1 is a solution.
Otherwise, gcd(a, b) does not divide c, and one can show that (4) has no solution. See Handout 6

2This follows from the division theorem, which can be written in the form a = b · ba/bc+ (a mod b).

http://zoo.cs.yale.edu/classes/cs467/2008f/course/handouts/ho06.pdf
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for further details, as well as for a discussion of how many solutions (4) has and how to find all
solutions.

Here’s an example. Suppose one wants to solve the equation

31x− 45y = 3 (7)

In this example, a = 31 and b = −45. We begin with the triples

T1 = (31, 1, 0)
T2 = (45, 0,−1)

The computation is shown in the following table:

i ri ui vi qi
1 31 1 0
2 45 0 −1 0
3 31 1 0 1
4 14 −1 −1 2
5 3 3 2 4
6 2 −13 −9 1
7 1 16 11 2
8 0 −45 −31

From T7 = (1, 16, 11) and (5), we obtain

1 = a× 16 + b× 11

Plugging in values a = 31 and b = −45, we compute

31× 16 + (−45)× 11 = 496− 495 = 1

as desired. The solution to (7) is then x = 3× 16 = 48 and y = 3× 11 = 33.
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