Lecture Notes 11

45 Generating RSA Encryption and Decryption Exponents

We showed in section 44 (lecture notes 10) that RSA decryption works for $m \in \mathbf{Z}_{n}^{*}$ if e and d are chosen so that

$$
\begin{equation*}
e d \equiv 1 \quad(\bmod \phi(n)), \tag{1}
\end{equation*}
$$

that is, d is e^{-1} (the inverse of e) in $\mathbf{Z}_{\phi(n)}^{*}$.
We now turn to the question of how Alice chooses e and d to satisfy (1). One way she can do this is to choose a random integer $e \in \mathbf{Z}_{\phi(n)}^{*}$ and then solve $\sqrt{11}$ for d. We will show how to solve for d in Sections 46 and 47 below.

However, there is another issue, namely, how does Alice find random $e \in \mathbf{Z}_{\phi(n)}^{*}$? If $\mathbf{Z}_{\phi(n)}^{*}$ is large enough, then she can just choose random elements from $\mathbf{Z}_{\phi(n)}$ until she encounters one that also lies in $\mathbf{Z}_{\phi(n)}^{*}$. A candidate element e lies in $\mathbf{Z}_{\phi(n)}^{*}$ if $\operatorname{gcd}(e, \phi(n))=1$, which can be computed efficiently using Algorithm 42.2 (Euclidean algorithm) ${ }^{1}$

But how large is large enough? If $\phi(\phi(n))$ (the size of $\left.\mathbf{Z}_{\phi(n)}^{*}\right)$ is much smaller than $\phi(n)$ (the size of $\mathbf{Z}_{\phi(n)}$), Alice might have to search for a long time before finding a suitable candidate for e.

In general, \mathbf{Z}_{m}^{*} can be considerably smaller than m. For example, if $m=\left|\mathbf{Z}_{m}\right|=210$, then $\left|\mathbf{Z}_{m}^{*}\right|=48$. In this case, the probability that a randomly-chosen element of \mathbf{Z}_{m} falls in \mathbf{Z}_{m}^{*} is only $48 / 210=8 / 35=0.228 \ldots$.

The following theorem provides a crude lower bound on how small \mathbf{Z}_{m}^{*} can be relative to the size of \mathbf{Z}_{m} that is nevertheless sufficient for our purposes.

Theorem 1 For all $m \geq 2$,

$$
\frac{\left|\mathbf{Z}_{m}^{*}\right|}{\left|\mathbf{Z}_{m}\right|} \geq \frac{1}{1+\left\lfloor\log _{2} m\right\rfloor}
$$

Proof: Write m in factored form as $m=\prod_{i=1}^{t} p_{i}^{e_{i}}$, where p_{i} is the $i^{\text {th }}$ prime that divides m and $e_{i} \geq 1$. Then $\phi(m)=\prod_{i=1}^{t}\left(p_{i}-1\right) p_{i}^{e_{i}-1}$, so

$$
\begin{equation*}
\frac{\left|\mathbf{Z}_{m}^{*}\right|}{\left|\mathbf{Z}_{m}\right|}=\frac{\phi(m)}{m}=\frac{\prod_{i=1}^{t}\left(p_{i}-1\right) p_{i}^{e_{i}-1}}{\prod_{i=1}^{t} p_{i}^{e_{i}}}=\prod_{i=1}^{t}\left(\frac{p_{i}-1}{p_{i}}\right) . \tag{2}
\end{equation*}
$$

To estimate the size of $\prod_{i=1}^{t}\left(p_{i}-1\right) / p_{i}$, note that $\left(p_{i}-1\right) / p_{i} \geq i /(i+1)$. This follows since $(x-1) / x$ is monotonic increasing in x, and $p_{i} \geq i+1$. Then

$$
\begin{equation*}
\prod_{i=1}^{t}\left(\frac{p_{i}-1}{p_{i}}\right) \geq \prod_{i=1}^{t}\left(\frac{i}{i+1}\right)=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{t}{t+1}=\frac{1}{t+1} . \tag{3}
\end{equation*}
$$

Clearly $t \leq\left\lfloor\log _{2} m\right\rfloor$ since $2^{t} \leq \prod_{i=1}^{t} p_{i} \leq m$ and t is an integer. Combining this fact with equations (2) and (3) gives the desired result.

[^0]For n a 1024-bit integer, $\phi(n)<n<2^{1024}$. Hence, $\log _{2}(\phi(n))<1024$, so $\left\lfloor\log _{2}(\phi(n))\right\rfloor \leq 1023$. By Theorem 11, the fraction of elements in $\mathbf{Z}_{\phi(n)}$ that also lie in $\mathbf{Z}_{\phi(n)}^{*}$ is at least $1 / 1024$. Therefore, the expected number of random trials before Alice finds a number in $\mathbf{Z}_{\phi(n)}^{*}$ is provably at most 1024 and is most likely much smaller.

46 Diophantine equations and modular inverses

Now that Alice knows how to choose $e \in \mathbf{Z}_{\phi(n)}^{*}$, how does she find d ? That is, how does she solve (1]? Note that d, if it exists, is a multiplicative inverse of $e(\bmod n)$, that is, a number that, when multiplied by e, gives $1(\bmod n)$.

Equation (1) is an instance of the general Diophantine equation

$$
\begin{equation*}
a x+b y=c \tag{4}
\end{equation*}
$$

Here, a, b, c are given integers. A solution consists of integer values for the unknowns x and y. To put (1) into this form, we note that $e d \equiv 1(\bmod \phi(n))$ iff $e d+u \phi(n)=1$ for some integer u. This is seen to be an equation in the form of (4) where the unknowns x and y are d and u, respectively, and the coefficients a, b, c are $e, \phi(n), 1$, respectively.

47 Extended Euclidean algorithm

It turns out that (4) is closely related to the greatest common divisor, for it has a solution iff $\operatorname{gcd}(a, b) \mid c$. It can be solved by a process akin to the Euclidean algorithm, which we call the Extended Euclidean algorithm. Here's how it works.

The algorithm generates a sequence of triples of numbers $T_{i}=\left(r_{i}, u_{i}, v_{i}\right)$, each satisfying the invariant

$$
\begin{equation*}
r_{i}=a u_{i}+b v_{i} \geq 0 . \tag{5}
\end{equation*}
$$

The first triple T_{1} is $(a, 1,0)$ if $a \geq 0$ and $(-a,-1,0)$ if $a<0$. The second trip T_{2} is $(b, 0,1)$ if $b \geq 0$ and $(-b, 0,-1)$ if $b<0$.

The algorithm generates T_{i+2} from T_{i} and T_{i+1} much the same as the Euclidean algorithm generates $(a \bmod b)$ from a and b. More precisely, let $q_{i+1}=\left\lfloor r_{i} / r_{i+1}\right\rfloor$. Then $T_{i+2}=T_{i}-$ $q_{i+1} T_{i+1}$, that is,

$$
\begin{aligned}
r_{i+2} & =r_{i}-q_{i+1} r_{i+1} \\
u_{i+2} & =u_{i}-q_{i+1} u_{i+1} \\
v_{i+2} & =v_{i}-q_{i+1} v_{i+1}
\end{aligned}
$$

Note that $r_{i+2}=\left(r_{i} \bmod r_{i+1}\right), 2$ so one sees that the sequence of generated pairs $\left(r_{1}, r_{2}\right),\left(r_{2}, r_{3}\right)$, $\left(r_{3}, r_{4}\right), \ldots$, is exactly the same as the sequence of pairs generated by the Euclidean algorithm. Like the Euclidean algorithm, we stop when $r_{t}=0$. Then $r_{t-1}=\operatorname{gcd}(a, b)$, and from (5) it follows that

$$
\begin{equation*}
\operatorname{gcd}(a, b)=a u_{t-1}+b v_{t-1} \tag{6}
\end{equation*}
$$

Returning to equation (4), if $c=\operatorname{gcd}(a, b)$, then $x=u_{t-1}$ and $y=v_{t-1}$ is a solution. If c is a multiple of $\operatorname{gcd}(a, b)$, then $c=k \operatorname{gcd}(a, b)$ for some k and $x=k u_{t-1}$ and $y=k v_{t-1}$ is a solution. Otherwise, $\operatorname{gcd}(a, b)$ does not divide c, and one can show that (4) has no solution. See Handout 6

[^1]for further details, as well as for a discussion of how many solutions (4) has and how to find all solutions.

Here's an example. Suppose one wants to solve the equation

$$
\begin{equation*}
31 x-45 y=3 \tag{7}
\end{equation*}
$$

In this example, $a=31$ and $b=-45$. We begin with the triples

$$
\begin{aligned}
& T_{1}=(31,1,0) \\
& T_{2}=(45,0,-1)
\end{aligned}
$$

The computation is shown in the following table:

i	r_{i}	u_{i}	v_{i}	q_{i}
1	31	1	0	
2	45	0	-1	0
3	31	1	0	1
4	14	-1	-1	2
5	3	3	2	4
6	2	-13	-9	1
7	1	16	11	2
8	0	-45	-31	

From $T_{7}=(1,16,11)$ and (5), we obtain

$$
1=a \times 16+b \times 11
$$

Plugging in values $a=31$ and $b=-45$, we compute

$$
31 \times 16+(-45) \times 11=496-495=1
$$

as desired. The solution to (7) is then $x=3 \times 16=48$ and $y=3 \times 11=33$.

[^0]: ${ }^{1} \phi(n)$ itself is easily computed for an RSA modulus $n=p q$ since $\phi(n)=(p-1)(q-1)$.

[^1]: ${ }^{2}$ This follows from the division theorem, which can be written in the form $a=b \cdot\lfloor a / b\rfloor+(a \bmod b)$.

