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61 Quadratic Residues, Squares, and Square Roots

An integer a is called a quadratic residue (or perfect square) modulo n if a ≡ b2 (mod n) for some
integer b. Such a b is said to be a square root of a modulo n. We let

QRn = {a ∈ Z∗
n | a is a quadratic residue modulo n}.

be the set of quadratic residues in Z∗
n, and we denote the set of non-quadratic residues in Z∗

n by
QNRn = Z∗

n −QRn.

62 Square Roots Modulo a Prime

Claim 1 For an odd prime p, every a ∈ QRp has exactly two square roots in Z∗
p, and exactly 1/2 of

the elements of Z∗
p are quadratic residues.

For example, take p = 11. The following table shows all of the elements of Z∗
11 and their squares.

a a2 mod 11
1 1
2 4
3 9
4 5
5 3
6 = −5 3
7 = −4 5
8 = −3 9
9 = −2 4

10 = −1 1

Thus, we see that QR11 = {1, 3, 4, 5, 9} and QNR11 = {2, 6, 7, 8, 10}.

Proof: We now prove Claim 1. Consider the mapping sq : Z∗
p → QRp defined by b 7→ b2 mod p.

We show that this is a 2-to-1 mapping from Z∗
p onto QRp.

Let a ∈ QRp, and let b2 ≡ a (mod p) be a square root of a. Then −b is also a square root of a,
and b 6≡ −b (mod p) since p ∼| 2b. Hence, a has at least two distinct square roots (mod n). Now
let c be any square root of a.

c2 ≡ a ≡ b2 (mod p).

Then p | c2 − b2, so p | (c − b)(c + b). Since p is prime, then either p | (c − b), in which case c ≡ b
(mod p), or p | (c + b), in which case c ≡ −b (mod p). Hence c ≡ ±b (mod p). Since c was an
arbitrary square root of a, it follows that ±b are the only two square roots of a. Hence, sq() is a
2-to-1 function, and |QRp| = 1

2 |Z
∗
p| as desired.
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63 Square Roots Modulo the Product of Two Primes

Claim 2 Let n = pq for p, q distinct odd primes. Then every a ∈ QRn has exactly four square
roots in Z∗

n, and exactly 1/4 of the elements of Z∗
n are quadratic residues.

Proof: Consider the mapping sq : Z∗
n → QRn defined by b 7→ b2 mod n. We show that this is a

4-to-1 mapping from Z∗
n onto QRn.

Let a ∈ QRn and let b2 ≡ a (mod n) be a square root of a. Then also b2 ≡ a (mod p)
and b2 ≡ a (mod q), so b is a square root of a (mod p) and b is a square root of a (mod q).
Conversely, if bp is a square root of a (mod p) and bq is a square root of a (mod q), then by the
Chinese Remainder theorem, the unique number b ∈ Z∗

n such that b ≡ bp (mod p) and b ≡ bq

(mod q) is a square root of a (mod n). Since a has two square roots mod p and two square
roots mod q, it follows that a has four square roots mod n. Thus, sq() is a 4-to-1 function, and
|QRn| = 1

4 |Z
∗
n| as desired.

64 Euler Criterion

There is a simple test due to Euler for whether a number is in QRp for p prime.

Claim 3 (Euler Criterion): An integer a is a non-trivial1 quadratic residue modulo p iff

a(p−1)/2 ≡ 1 (mod p).

Proof: Let a ≡ b2 (mod p) for some b 6≡ 0 (mod p). Then

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 (mod p)

by Euler’s theorem, as desired.
For the other direction, suppose a(p−1)/2 ≡ 1 (mod p). Clearly a 6≡ 0 (mod p). We show that

a is a quadratic residue by finding a square root b modulo p.
Let g be a primitive root of p. Choose k so that a ≡ gk (mod p), and let ` = (p− 1)k/2. Then

g` ≡ g(p−1)k/2 ≡ (gk)(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p).

Because g is a primitive root, g` ≡ 1 (mod p) implies that ` is a multiple of p − 1. Hence,
(p − 1) | (p − 1)k/2, from which we conclude that 2|k and k/2 is an integer. Let b = gk/2. Then
b2 ≡ gk ≡ a (mod p), so b is a square root of a modulo p, as desired.

65 Finding Square Roots Modulo Special Primes

The Euler criterion lets us test membership in QRp for prime p, but it doesn’t tell us how to find
square roots. In case p ≡ 3 (mod 4), there is an easy algorithm for finding the square roots of any
member of QRp.

Claim 4 Let p ≡ 3 (mod 4), a ∈ QRp. Then b = a(p+1)/4 is a square root of a (mod p).

Proof: Under the assumptions of the claim, p + 1 is divisible by 4, so (p + 1)/4 is an integer. Then

b2 ≡ (a(p+1)/4)2 ≡ a(p+1)/2 ≡ a1+(p−1)/2 ≡ a · a(p−1)/2 ≡ a · 1 ≡ a (mod p)

by the Euler Criterion (Claim 3).
1A non-trivial quadratic residue is one that is not equivalent to 0 (mod p).
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66 Shank’s Algorithm for Finding Square Roots Modulo Odd Primes

Let p be an odd prime. Let s and t be unique integers such that p− 1 = 2st and t is odd. (Note that
s is simply the number of trailing 0’s in the binary expansion of p− 1, and t is what remains when
p− 1 is shifted right by s places.) Because p is odd, p− 1 is even, so s ≥ 1.

In the special case when s = 1, p− 1 = 2t, so p = 2t + 1. Writing the odd number t as 2` + 1
for some integer `, we have p = 2(2` + 1) + 1 = 4` + 3, so p ≡ 3 (mod 4). But this is exactly the
special that we considered in Section 65.

We now present an algorithm that works to find square roots of quadratic residues modulo any
odd prime p. Algorithm 66.1, due to D. Shanks2, bears a strong resemblance to Algorithm 56.1 for
factoring the RSA modulus given both the encryption and decryption exponents.

Let p, s, t be as above. Assume a ∈ QRp is a quadratic residue and u ∈ QNRp is a quadratic
non-residue. (We can easily find u by choosing random elements of Z∗

p and applying the Euler
Criterion.) The goal is to find x such that x2 ≡ a (mod p).

Shank’s Algorithm
Input: Odd prime p, quadratic residue a ∈ QRp.
Output: A square root of a (mod p).

1. Let s, t satisfy p = 2st and t odd.
2. Let u ∈ QNRp.
3. k = s
4. z = ut mod p

5. x = a(t+1)/2 mod p
6. b = at mod p
7. while (b 6≡ 1 (mod p)) {
8. let m be the least integer with b2m ≡ 1 (mod p)
9. t = z2k−m−1

mod p
10. z = t2 mod p
11. b = bz mod p
12. x = xt mod p
13. k = m
14. }
15. return x

Figure 66.1: Shank’s algorithm for finding a square root of a (mod n).

The congruence x2 ≡ ab (mod p) is easily shown to be a loop invariant. It’s clearly true
initially since x2 ≡ at+1 and b ≡ at (mod p). Each time through the loop, a is unchanged, b gets
multiplied by t2 (lines 10 and 11), and x gets multiplied by t (line 12); hence the invariant remains
true regardless of the value of t. If the program terminates, we have b ≡ 1 (mod p), so x2 ≡ a,
and x is a square root of a (mod p).

To see why it terminates after at most s iterations of the loop, we look at the orders3 of b and z
(mod p) at the start of each loop iteration (before line 8) and show that ord(b) < ord(z) = 2k.

2Shanks’s algorithm appeared in his paper, “Five number-theoretic algorithms”, in Proceedings of the Second Man-
itoba Conference on Numerical Mathematics, Congressus Numerantium, No. VII, 1973, 51–70. Our treatment is taken
from the paper by Jan-Christoph Schlage-Puchta”, “On Shank’s Algorithm for Modular Square Roots”, Applied Mathe-
matics E-Notes, 5 (2005), 84–88.

3Recall that the order of an element g modulo p is the least integer k such that gk ≡ 1 (mod p).
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On the first iteration, k = s, and z ≡ ut (mod p). We argue that ord(z) = 2s. Clearly

z2s ≡ u2st ≡ up−1 ≡ 1 (mod p),

so ord(z) |2s. By the Euler Criterion, since u is a non-residue, we have

z2s−1 ≡ u2s−1t ≡ u(p−1)/2 6≡ 1 (mod p).

Hence, ord(z) = 2s. Using similar reasoning, since a is a quadratic residue, b2s−1 ≡ 1 (mod p),
so ord(b) |2s−1. It follows that ord(b) < ord(z) = 2s = 2k.

Now, on each iteration, line 8 sets m = ord(b) and line 9 sets t = z2k−m−1
mod p, so

ord(t) = ord(z)/2k−m−1 = 2k/2k−m−1 = 2m+1.

Line 10 sets z = t2, so ord(z) = ord(t)/2 = 2m. After line 11, ord(b) < 2m. This because the
old value of b and the new value of z both have order 2m. Hence, both of those numbers raised to
the power 2m−1 are −1 (mod p), so their product (the new value of b) raised to that same power
is (−1)2 ≡ 1. Line 13 sets k = m in preparation for the next iteration, and the loop invariant
ord(b) < ord(z) = 2k is maintained. Moreover, ord(b) is reduced at each iteration, so the loop
must terminate after at most s iterations.

67 QR Probabilistic Cryptosystem

Let n = pq, p, q distinct odd primes. We can divide the numbers in Z∗
n into four classes depending

on their membership in QRp and QRq.4 Let Q11
n be those numbers that are quadratic residues mod

both p and q; let Q10
n be those numbers that are quadratic residues mod p but not mod q; let Q01

n

be those numbers that are quadratic residues mod q but not mod p; and let Q00
n be those numbers

that are neither quadratic residues mod p nor mod q. Under these definitions, Q11
n = QRn and

Q00
n ∪Q01

n ∪Q10
n = QNRn.

Fact Given a ∈ Q00
n ∪ Q11

n , there is no known feasible algorithm for determining whether or not
a ∈ QRn that gives the correct answer significantly more than 1/2 the time.

The Goldwasser-Micali cryptosystem is based on this fact. The public key consist of a pair
e = (n, y), where n = pq for distinct odd primes p, q, and y ∈ Q00

n . The private key consists of p.
The message space isM = {0, 1}.

To encrypt m ∈ M, Alice chooses a random a ∈ QRn. She does this by choosing a random
member of Z∗

n and squaring it. If m = 0, then c = a mod n. If m = 1, then c = ay mod n. The
ciphertext is c.

It is easily shown that if m = 0, then c ∈ Q11
n , and if m = 1, then c ∈ Q00

n . One can also show
that every element of Q11

n is equally likely to be chosen as the ciphertext c in case m = 0, and every
element of Q00

n is equally likely to be chosen as the ciphertext c in case m = 1. Eve’s problem
of determining whether c encrypts 0 or 1 is the same as the problem of distinguishing between
membership in Q00

n and Q11
n , which by the above fact is believed to be hard. Anyone knowing

the private key p, however, can use the Euler Criterion to quickly determine whether or not c is a
quadratic residue mod p and hence whether c ∈ Q11

n or c ∈ Q00
n , thereby determining m.

4To be strictly formal, we classify a ∈ Z∗n according to whether or not (a mod p) ∈ QRp and whether or not
(a mod q) ∈ QRq .
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