
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 19 (rev. 2)
Professor M. J. Fischer November 12, 2008

Lecture Notes 19

83 Common Hash Functions

Many cryptographic hash functions are currently in use. For example, the openssl library includes
implementations of MD2, MD4, MD5, MDC2, RIPEMD, SHA, SHA–1, SHA–256, SHA–384, and
SHA–512. The SHA–xxx methods are recommended for new applications, but these other functions
are also in widespread use.

83.1 SHA–1

The revised Secure Hash Algorithm (SHA–1) is one of four algorithms described in U. S. Federal
Information Processing Standard FIPS PUB 180–2 (Secure Hash Standard).1 It states,

“Secure hash algorithms are typically used with other cryptographic algorithms, such
as digital signature algorithms and keyed-hash message authentication codes, or in the
generation of random numbers (bits).”

SHA–1 produces a 160-bit message digest. The other algorithms in the SHA–xxx family produce
longer message digests.

83.2 MD5

MD5 is an older algorithm (1992) devised by Rivest. We present an overview of it here. It generates
a 128-bit message digest from an input message of any length. It is built from a basic block function
g : 128-bit× 512-bit→ 128-bit.

The MD5 hash function h is obtained as follows: First the original message is padded to length
a multiple of 512. The result m is split into a sequence of 512-bit blocks m1,m2, . . . ,mk. Finally,
h is computed by chaining g on the first argument.

We look at these steps in greater detail. As with block encryption, it is important that the padding
function be one-to-one, but for a different reason. For encryption, the one-to-one property is what
allows unique decryption. For a hash function, it prevents there from being trivial colliding pairs.
For example, if the last partial block is simply padded with 0’s, then all prefixes of the last message
block will become the same after padding and will therefore collide with each other.

The function h can be regarded as a state machine, where the states are 128-bit strings and the
inputs to the machine are 512-bit blocks. The machine starts in state s0, specified by an initialization
vector IV. Each input block mi takes the machine from state si−1 to new state si = g(si−1,mi).
The last state sk is the output of h, that is,

h(m1m2 . . .mk−1mk) = g(g(. . . g(g(IV,m1),m2) . . . ,mk−1),mk).

1Available at http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf


2 CPSC 467a Lecture Notes 19 (rev. 2)

The block function g(s, b) is built from a scrambling function g′(s, b) that regards s and b as
sequences of 32-bit words and returns four 32-bit words as its result. Suppose s = s1s2s3s4 and
g′(s, b) = s′1s

′
2s
′
3s
′
4. Then we define

g(s, b) = (s1 + s′1) · (s2 + s′2) · (s3 + s′3) · (s4 + s′4),

where “+” means addition modulo 232 and “·” is concatenation of the representations of integers as
32-bit binary strings.

The computation of the scrambling function g′(s, b) consists of 4 stages, each consisting of 16
substages. We divide the 512-bit block b into 32-bit words b1b2 . . . b16. Each of the 16 substages of
stage i uses one of the 32-bit words of b, but the order they are used is defined by a permutation πi

that depends on i. In particular, substage j of stage i uses word b`, where ` = πi(j) to update the
state vector s. The new state is fi,j(s, b`), where fi,j is a bit-scrambling function that depends on i
and j.

Without going into further details of the functions fi,j , we note that the state s can be represented
by four 32-bit words, so the arguments to fi,j occupy only 5 machine words. These easily fit into
the high-speed registers of modern processors.

The definitive specification for MD5 is RFC1321 and errata. A general discussion of MD5
along with links to recent work and security issues can be found on Wikipedia.

84 Doubling Reduction Amount of Hash Functions

Suppose we are given a particular fixed-length hash function h : 256-bits→ 128-bits. How can we
use h to compute a 128-bit strong collision-free hash of a 512-bit input block? We consider several
possible ways to extend h to a hash functionH : 512-bits→ 128-bits. In the following, we suppose
that m is 512-bits long, and we write M = m1m2, where m1 and m2 are 256 bits each.

Method 1 Define H(M) = H(m1m2) = h(m1) ⊕ h(m2). Unfortunately, this fails to be either
strong or weak collision-free since M ′ = m2m1 always collides with M under H except in
the special case that m1 = m2.

Method 2 Define H(M) = H(m1m2) = h(h(m1)h(m2)).

Theorem 1 The H of method 2 is strong collision-free assuming that the h from which it is
derived is strong collision-free.

Proof: Assume the contrary, that one can find a colliding pair (M,M ′) for H . We show
that one can then find a colliding pair for h, contradicting the assumption that h is strong
collision-free.

Write M = m1m2 and M ′ = m′1m
′
2 for 256-bit blocks m1,m2,m

′
1,m

′
2. Since M collides

with M ′, we have that M 6= M ′ but H(M) = H(M ′). We consider two cases.

Case 1: h(m1) 6= h(m′1) or h(m2) 6= h(m′2). Let u = h(m1)h(m2) and u′ = h(m′1)h(m
′
2).

Then u 6= u′, but h(u) = H(M) = H(M ′) = h(u′), so (u, u′) is a colliding pair for h.

Case 2: h(m1) = h(m′1) and h(m2) = h(m′2). Since m 6= m′, then either m1 6= m′1 or
m2 6= m′2 (or both). But then whichever pair is unequal is a colliding pair for h.

In either case, we have found a colliding pair for h, contradicting the assumption that h was
strong collision-free.

http://tools.ietf.org/html/rfc1321
http://en.wikipedia.org/wiki/MD5


CPSC 467a Lecture Notes 19 (rev. 2) 3

85 A General Chaining Method for Constructing Hash Functions

Assume now that we have a hash function h : r-bits → t-bits, where r ≥ t + 2. In the above
example, r = 256 and t = 128. Divide the message m after appropriate padding into blocks
m1m2 . . .mk, each of length r − t− 1. Compute a sequence of t-bit states as follows:

s1 = h(0t0m1)
s2 = h(s11m2)

...
sk = h(sk−11mk).

Then H(m) = sk.

Theorem 2 Let H and h be the functions of section 85. Then H is strong collision-free assuming
that h is.

Proof: Assume to the contrary that H is not strong collision-free, so we are able to find a colliding
pair (m,m′) forH . We show how to find a colliding pair for h, contradicting the assumed collision-
freedom of h.

Let m = m1m2 . . .mk, let m′ = m′1m
′
2 . . .m

′
k′ , and let s1, . . . , sk and s′1, . . . , s

′
k′ be the

corresponding state sequences. We may assume without loss of generality that k ≤ k′. Because m
and m′ collide under H , we have sk = s′k′ . Let i be the least integer in {1, . . . , k} such that, for all
j ∈ {i, . . . , k}, we have sj = s′k′−k+j . Such an i exists since i = k is one value that works. We
proceed by cases:

Case 1: i = 1 and k = k′. Then sj = s′j for all j = 1, . . . , k. Because m 6= m′, there must be
some ` such that m` 6= m′`. If ` = 1, then (0t0m1, 0t0m′1) is a colliding pair for h. If ` > 1, then
(s`−11m`, s

′
`−11m

′
`) is a colliding pair for h.

Case 2: i = 1 and k < k′. Let u = k′ − k + 1. Then s1 = s′u. Since u > 1 we have that

h(0t0m1) = s1 = s′u = h(s′u−11m
′
u),

so (0t0m1, s′u−11m
′
u) is a colliding pair for h. Note that this is true even if 0t = s′u−1 and

m1 = m′u, a possibility that we have not ruled out.

Case 3: i > 1. Then u = k′ − k+ i > 1. By the definition of i, we have si = s′u, but si−1 6= s′u−1

since i was chosen to be as small as possible. Hence,

h(si−11mi) = si = s′u = h(s′u−11m
′
u),

so (si−11mi, s
′
u−11m

′
u) is a colliding pair for h.

In each case, we have found a colliding pair for h. The contradicts the assumption that h is
strong collision-free. Hence, H is also strong collision-free.

86 Hash Functions Do Not Always Look Random

Intuitively, we like to think of h(y) as being “random-looking”, with no obvious pattern. Indeed,
it would seem that obvious patterns and structure in h would provide a means of finding collisions,
violating the property of being strong-collision free. But this intuition is faulty, as I now show.



4 CPSC 467a Lecture Notes 19 (rev. 2)

Suppose h is a strong collision-free hash function. Define H(x) = 0 · h(x). Clearly, H also
enjoys these same properties. If (x1, x2) is a colliding pair for H , then it is also a colliding pair for
h. Thus, H is strong collision-free, despite the fact that the string H(x) always begins with 0. Later
on, we will talk about how to make functions that truly do appear to be random (even though they
are not).

87 Birthday Attack on Hash Functions

Recall that the MD5 hash function produces 128-bit values, whereas SDA–1 produces 160-bit val-
ues. How many bits do we need for security? Both 2128 and 2160 are more than large enough to
thwart a brute force attack that simply searches randomly for colliding pairs (m,m′). However,
the so-called Birthday Attack reduces the size of the search space to roughly the square root of the
original size. Thus, MD5 has roughly the same resistance to the birthday attack as a cryptosystem
with 64-bit keys would have to a brute force attack. Similarly, SHA–1’s effective size in terms of
birthday attack resistance is only 80-bits.2

We saw an example of a birthday attack in section 26 of lecture notes 5. The birthday attack is
named for the birthday paradox. This is the fact that there is approximately a 50–50 chance that two
people in a room of 23 strangers have the same birthday. There is a nice description of the birthday
paradox on the web at http://en.wikipedia.org/wiki/Birthday paradox. The probability of not having
two people with the same birthday is is

q =
365
365
· 364
365
· · · 343

365
= 0.492703

Hence, the probability that (at least) two people have the same birthday is 1− q = 0.507297. This
probability grows quite rapidly with the number of people in the room. For example, with 46 people,
the probability that two share a birthday is 0.948253.

The birthday paradox can be applied to hash functions to yield a much faster way to find collid-
ing pairs than choosing pairs at random. The idea is to choose a random set of k messages and then
see if any two messages in the set collide. There are

(k
2

)
= k(k−1)/2 different pairs of messages in

a set of size k, so on can test this many pairs at a cost of only k evaluations of the hash function. Of
course, these

(k
2

)
pairs are not uniformly distributed, so one needs a birthday-paradox style analysis

of the probability that a colliding pair will be found. The general result is that the probability of
success is at least one half for k roughly the size of

√
n, where n is the size of the message space.

Two problems remain that make this attack difficult to use in practice. First, there is the problem
of finding duplicates in the list of hash values. That can be done in time O(k log k) by sorting the
list and then looking for adjacent equal elements. The more serious problem with this approach,
and with the birthday attack in general, is the amount of storage required. While carrying out 264

computational steps is almost on the verge of feasibility, finding that much storage is still way out of
the question, so MD5 and other 128-bit hash functions are still safe from this attack. Nevertheless,
the birthday attack is one of the more subtle ways that cryptographic primitives can be compromised.

88 Hash from Cryptosystem

We’ve already seen several cryptographic hash functions as well as methods for making new hash
functions from old. Here’s a way to make a hash function from a symmetric cryptosystem with

2A recent attack reported by Chinese researchers Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu (mostly from
Shandong University) have reduced this number to only 69-bits.

http://zoo.cs.yale.edu/classes/cs467/2008f/attach/ln05.html
http://en.wikipedia.org/wiki/Birthday_paradox
http://en.wikipedia.org/wiki/Birthday_paradox


CPSC 467a Lecture Notes 19 (rev. 2) 5

encryption function Ek(b). Assume that the key length and block length are the same. Let m be an
arbitrary length message. Pad it appropriately and divide it into block lengths appropriate for the
cryptosystem. Compute the following state sequence:

s0 = IV
s1 = f(s0,m1)

...
sk = f(sk−1,mk).

The output H(m) of the new hash function is sk. IV is an initial vector and f is a function built
from E. Some possibilities for f are

f1(s, b) = Es(b)⊕ b
f2(s, b) = Es(b)⊕ b⊕ s
f3(s, b) = Es(b⊕ s)⊕ b
f4(s, b) = Es(b⊕ s)⊕ b⊕ s

You should think about why these particular functions do or do not lead to a strong collision-free
hash function. For example, if k = 1 and f = f1, thenH1(b) = EIV (b)⊕b. EIV itself is one-to-one
(since it’s an encryption function), but what can we say about H1(b)? Indeed, if bad luck would
have it that EIV is the identity function, then H1(b) = 0 for all b, and all pairs of message blocks
collide!


	Common Hash Functions
	SHA--1
	MD5

	Doubling Reduction Amount of Hash Functions
	A General Chaining Method for Constructing Hash Functions
	Hash Functions Do Not Always Look Random
	Birthday Attack on Hash Functions
	Hash from Cryptosystem

