YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
CPSC 467a: Cryptography and Computer Security
Handout \#4

Problem Set 2

Due on Friday, October 3, 2008.

In this problem set, we consider a variant of the Caesar cipher which we call the "Happy" cipher (named after the venerable "Happy Hacker" of CPSC 223 fame). Happy (E, D) is defined as follows: Let $X_{1}=\{0, \ldots, 12\}$ and $X_{2}=\{13, \ldots, 25\}$. Let $\mathcal{M}=\mathcal{C}=\mathcal{K}=X=X_{1} \cup X_{2}$, and let $n=|X|=26$. Define

$$
E_{k}(m)= \begin{cases}(m+k) \bmod 13 & \text { if } k \in X_{1} \wedge m \in X_{1} \\ m & \text { if } k \in X_{1} \wedge m \in X_{2} \\ m & \text { if } k \in X_{2} \wedge m \in X_{1} \\ ((m+k) \bmod 13)+13 & \text { if } k \in X_{2} \wedge m \in X_{2}\end{cases}
$$

We also consider Double Happy $\left(E^{2}, D^{2}\right)$. Here, $\mathcal{K}^{2}=\mathcal{K} \times \mathcal{K}$, and $E_{\left(k_{1}, k_{2}\right)}^{2}=E_{k_{2}}\left(E_{k_{1}}(m)\right)$.

Problem 1: Happy Encryption (5 points)

Encrypt the plaintext "i am a secret message" using Happy with key $k=3$. (As usual, we will ignore spaces.)

Problem 2: Happy Decryption (5 points)

Describe the Happy decryption function $D_{k}(c)$.

Problem 3: Security (10 points)

(a) Is Happy information-theoretically secure? Why or why not?
(b) Is Double Happy information-theoretically secure? Why or why not?

Problem 4: Equivalent Key Pairs (10 points)

Suppose $m_{0}=c_{0}=4$.
(a) Find all key pairs $\left(k, k^{\prime}\right)$ such that $E_{\left(k, k^{\prime}\right)}^{2}\left(m_{0}\right)=c_{0}$.
(b) Do all such key pairs give rise to the same function $E_{\left(k, k^{\prime}\right)}^{2}$? That is, if $E_{\left(\hat{k}, \hat{k}^{\prime}\right)}^{2}\left(m_{0}\right)=$ $E_{\left(k, k^{\prime}\right)}^{2}\left(m_{0}\right)=c_{0}$, does $E_{\left(\hat{k}, \hat{k}^{\prime}\right)}^{2}(m)=E_{\left(k, k^{\prime}\right)}^{2}(m)$ for all $m \in \mathcal{M}$? Why or why not?

Problem 5: Group Property (10 points)

Is Happy a group? Why or why not?

The following problems ask you to compute probabilities. You may do so either analytically (if you're facile with combinatorial counting techniques) or experimentally by writing a program to simulate 1000 random trials and reporting the fraction of times that the desired result is obtained. Either way, you should show your work - analytic derivation, or program and simulation results.

Problem 6: Birthday Problem (20 points)

Suppose u_{1}, \ldots, u_{6} and v_{1}, \ldots, v_{6} are chosen uniformly and independently at random from X (so duplicates are possible. Find the probability that $\left\{u_{1}, \ldots, u_{6}\right\} \cap\left\{v_{1}, \ldots, v_{6}\right\} \neq \emptyset$. (Note that $6=\lceil\sqrt{n}\rceil$.)

Problem 7: Birthday Attack on Double Happy (40 points)

Assume Alice chooses a random key pair $\left(k_{0}, k_{0}^{\prime}\right)$ and a random message m and computes $c=$ $E_{\left(k_{0}, k_{0}^{\prime}\right)}^{2}(m)$ using Double Happy. Eve learns the plaintext-ciphertext pair (m, c) and then carries out the Birthday Attack for $m \in \mathcal{M}$ and $c \in \mathcal{C}$ as follows:

- She chooses k_{1}, \ldots, k_{6} uniformly at random from \mathcal{K} and computes $u_{i}=E_{k_{i}}(m)$ for $i=$ $1, \ldots, 6$.
- She chooses $k_{1}^{\prime}, \ldots, k_{6}^{\prime}$ uniformly at random from \mathcal{K} and computes $v_{j}=D_{k_{j}^{\prime}}(c)$ for $j=$ $1, \ldots, 6$.
- If $\left\{u_{1}, \ldots, u_{6}\right\} \cap\left\{v_{1}, \ldots, v_{6}\right\} \neq \emptyset$, we say the Birthday Attack succeeds in producing a candidate key pair. In that case, Eve obtains the candidate key pair $\left(k, k^{\prime}\right)=\left(k_{i}, k_{j}^{\prime}\right)$, where (i, j) is the lexicographically smallest pair such that $u_{i}=v_{j}$.
- If a candidate key pair $\left(k, k^{\prime}\right)$ is produced and $\left(k, k^{\prime}\right)$ can be used to decrypt any message Alice might send using her key, that is, if $\left.D_{\left(k, k^{\prime}\right)}^{2}\right)\left(E_{\left(k_{0}, k_{0}^{\prime}\right)}^{2}(m)\right)=m$ for all $m \in \mathcal{M}$, then we say the Birthday Attack succeeds in breaking Double Happy.
(a) Find the probability that the Birthday Attack succeeds in producing a candidate key pair, and compare your result with your answer to problem6
(b) Find the probability that the Birthday Attack succeeds in breaking Double Happy.

