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Due on Friday, October 3, 2008.

In this problem set, we consider a variant of the Caesar cipher which we call the “Happy” cipher
(named after the venerable “Happy Hacker” of CPSC 223 fame). Happy (E,D) is defined as
follows: Let X1 = {0, . . . , 12} and X2 = {13, . . . , 25}. Let M = C = K = X = X1 ∪ X2, and
let n = |X| = 26. Define

Ek(m) =


(m + k) mod 13 if k ∈ X1 ∧m ∈ X1

m if k ∈ X1 ∧m ∈ X2

m if k ∈ X2 ∧m ∈ X1

((m + k) mod 13) + 13 if k ∈ X2 ∧m ∈ X2

We also consider Double Happy (E2, D2). Here, K2 = K ×K, and E2
(k1,k2) = Ek2(Ek1(m)).

Problem 1: Happy Encryption (5 points)

Encrypt the plaintext “i am a secret message” using Happy with key k = 3. (As usual, we will
ignore spaces.)

Problem 2: Happy Decryption (5 points)

Describe the Happy decryption function Dk(c).

Problem 3: Security (10 points)

(a) Is Happy information-theoretically secure? Why or why not?

(b) Is Double Happy information-theoretically secure? Why or why not?

Problem 4: Equivalent Key Pairs (10 points)

Suppose m0 = c0 = 4.

(a) Find all key pairs (k, k′) such that E2
(k,k′)(m0) = c0.

(b) Do all such key pairs give rise to the same function E2
(k,k′)? That is, if E2

(k̂,k̂′)
(m0) =

E2
(k,k′)(m0) = c0, does E2

(k̂,k̂′)
(m) = E2

(k,k′)(m) for all m ∈M? Why or why not?

Problem 5: Group Property (10 points)

Is Happy a group? Why or why not?
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The following problems ask you to compute probabilities. You may do so either analytically (if
you’re facile with combinatorial counting techniques) or experimentally by writing a program to
simulate 1000 random trials and reporting the fraction of times that the desired result is obtained.
Either way, you should show your work – analytic derivation, or program and simulation results.

Problem 6: Birthday Problem (20 points)

Suppose u1, . . . , u6 and v1, . . . , v6 are chosen uniformly and independently at random from X (so
duplicates are possible. Find the probability that {u1, . . . , u6} ∩ {v1, . . . , v6} 6= ∅. (Note that
6 = d

√
n e.)

Problem 7: Birthday Attack on Double Happy (40 points)

Assume Alice chooses a random key pair (k0, k
′
0) and a random message m and computes c =

E2
(k0,k′

0)(m) using Double Happy. Eve learns the plaintext-ciphertext pair (m, c) and then carries
out the Birthday Attack for m ∈M and c ∈ C as follows:

• She chooses k1, . . . , k6 uniformly at random from K and computes ui = Eki
(m) for i =

1, . . . , 6.

• She chooses k′
1, . . . , k

′
6 uniformly at random from K and computes vj = Dk′

j
(c) for j =

1, . . . , 6.

• If {u1, . . . , u6} ∩ {v1, . . . , v6} 6= ∅, we say the Birthday Attack succeeds in producing a
candidate key pair. In that case, Eve obtains the candidate key pair (k, k′) = (ki, k

′
j), where

(i, j) is the lexicographically smallest pair such that ui = vj .

• If a candidate key pair (k, k′) is produced and (k, k′) can be used to decrypt any message
Alice might send using her key, that is, if D2

(k,k′)(E
2
(k0,k′

0)(m)) = m for all m ∈M, then we
say the Birthday Attack succeeds in breaking Double Happy.

(a) Find the probability that the Birthday Attack succeeds in producing a candidate key pair, and
compare your result with your answer to problem 6.

(b) Find the probability that the Birthday Attack succeeds in breaking Double Happy.
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