Solution to Problem Set 4

Due on Monday, November 3, 2008.
In the problems below, "textbook" refers to Douglas R. Stinson, Cryptography: Theory and Practice, Third Edition, Chapman \& Hall/CRC, 2006.

Problem 1: Homomorpohic Mapping χ

Textbook, problem 5.5.

Solution:

According to Chinese remainder theorem, define the function $\chi^{-1}: \mathbf{Z}_{3} \times \mathbf{Z}_{5} \times \mathbf{Z}_{7} \rightarrow \mathbf{Z}_{105}$ as follows:

$$
\begin{equation*}
\chi^{-1}\left(a_{1}, a_{2}, a_{3}\right)=\left(\sum_{i=1}^{3} a_{i} M_{i} N_{i}\right) \bmod 105, \tag{1}
\end{equation*}
$$

where $\left\{n_{i}\right\}=\{3,5,7\}, N_{i}=105 / n_{i}$ and $M_{i}=N_{i}^{-1} \bmod n_{i}$. Therefore, we compute $\chi^{-1}\left(a_{1}, a_{2}, a_{3}\right)$ as follows:

$$
\left.\begin{array}{rl}
& n_{1}=3, N_{1}=35, M_{1}=35^{-1} \bmod 3=2 \\
n_{2}=5, N_{2}=21, M_{2}=21^{-1} \bmod 5=1 \\
n_{3}=7, N_{3}=15, M_{3}=15^{-1} \bmod 7=1 \tag{2}
\end{array}\right\}
$$

Thus we can compute $\chi^{-1}(2,2,3)=(70 \times 2+21 \times 2+15 \times 3) \bmod 105=17$.

Problem 2: Chinese Remainder Theorem

Textbook, problem 5.6.

Solution:

According to Chinese remainder theorem, define x as follows:

$$
\begin{equation*}
x=\chi^{-1}\left(a_{1}, a_{2}, a_{3}\right)=\left(\sum_{i=1}^{3} a_{i} M_{i} N_{i}\right) \bmod (25 \times 26 \times 27), \tag{3}
\end{equation*}
$$

Therefore, we compute $\chi^{-1}\left(a_{1}, a_{2}, a_{3}\right)$ as follows:

$$
n_{1}=25, N_{1}=702, M_{1}=702^{-1} \bmod 25=(-12) \bmod 25=13
$$

i	r_{i}	u_{i}	v_{i}	q_{i}
1	702	1	0	
2	25	0	1	28
3	2	1	-28	12
4	1	-12	337	

$$
\begin{aligned}
& n_{2}=26, N_{2}=675, M_{2}=675^{-1} \bmod 26=(-1) \bmod 26=25 . \\
& n_{3}=27, N_{3}=650, M_{3}=650^{-1} \bmod 27=(-13) \bmod 27=14 \text {. } \\
& x=\chi^{-1}(12,9,23) \\
& =(702 \times 13 \times 12+675 \times 25 \times 9+650 \times 14 \times 23) \bmod (25 \times 26 \times 27) \\
& =14387
\end{aligned}
$$

Problem 3: Primitive Root

Textbook, problem 5.9.

Solution:

Lucas test says, g is a primitive root of p if and only if $g^{(p-1) / q} \not \equiv 1(\bmod p)$ for all $q>1$ such that $q \mid(p-1)$. Now because p and q are odd primes such that $p=2 q+1$, there are only two integers that we need to test with, 2 and q. We know that $\alpha \not \equiv \pm 1(\bmod p)$. Then $\alpha^{2} \not \equiv 1(\bmod p)$ since if it were, α would be a square root of $1(\bmod p)$, and the only square roots of 1 modulo a prime are ± 1.

Now let us look at α^{q}. Since p is a prime and $\alpha \in \mathbf{Z}_{p}^{*}$, then $\phi(p)=p-1=2 q$, so by Euler's theorem, $\alpha^{2 q} \equiv 1(\bmod p)$. Then α^{q} is a square root of $1(\bmod p)$, so

$$
\begin{equation*}
\alpha^{q} \equiv \pm 1(\bmod p) \tag{4}
\end{equation*}
$$

According to Lucas test, α is a primitive root of p if and only if $\alpha^{q} \not \equiv 1(\bmod p)$. Combining this with (4), we conclude that α is a primitive root of p if and only if $\alpha^{q} \equiv-1(\bmod p)$.

Problem 4: RSA Speedup

Textbook, problem 5.13.

Solution:

(a) We have the following equations:

$$
\begin{align*}
d_{p} & =d \bmod (p-1) \tag{5}\\
d_{q} & =d \bmod (q-1) \tag{6}\\
x_{p} & =y^{d_{p}} \bmod p \tag{7}\\
x_{q} & =y^{d_{q}} \bmod q \tag{8}\\
x & =M_{p} q x_{p}+M_{q} p x_{q} \bmod n \tag{9}
\end{align*}
$$

Combining (5) and (7) gives

$$
\begin{equation*}
x_{p}=y^{d \bmod (p-1)} \bmod p \tag{10}
\end{equation*}
$$

Since p is prime, $\phi(p)=p-1$. According to Euler's theorem, if $\operatorname{gcd}(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$, which implies

$$
\begin{equation*}
y^{d}=y^{\lfloor d /(p-1)\rfloor(p-1)+d \bmod (p-1)} \equiv y^{d \bmod (p-1)}(\bmod p) \tag{11}
\end{equation*}
$$

Combining (10) and 11 gives

$$
\begin{equation*}
y^{d} \bmod p \equiv x_{p}(\bmod p) \tag{12}
\end{equation*}
$$

Similarly, from (6) and (8) we can derive

$$
\begin{equation*}
y^{d} \bmod p \equiv x_{q}(\bmod q) \tag{13}
\end{equation*}
$$

Therefore, according to Chinese reminder theorem, there is a unique solution for $y^{d} \bmod p$, which is calculated exactly the same as (9) does. Thus we conclude that the value x returned by this algorithm is in fact $y^{d} \bmod p$.
(b)

$$
\begin{aligned}
d_{p} & =1234577 \bmod (1511-1)=907 \\
d_{q} & =1234577 \bmod (2003-1)=1345 \\
M_{p} & =2003^{-1} \bmod 1511=777 \\
M_{q} & =1511^{-1} \bmod 2003=973
\end{aligned}
$$

(c)

$$
\begin{aligned}
x_{p} & =152702^{907} \bmod 1511=242 \\
x_{q} & =152702^{1345} \bmod 2003=1087 \\
x & =(777 \times 2003 \times 242+973 \times 1511 \times 1087) \bmod (1511 \times 2003)=1443247
\end{aligned}
$$

Problem 5: RSA Insecure Against Chosen Ciphertext Attack

Textbook, problem 5.14

Solution:

Let $y \hat{y} \equiv 1(\bmod n)$. Then the multiplicative property implies

$$
\begin{equation*}
1=y \hat{y} \bmod n=e_{K}(x) e_{K}(\hat{x}) \bmod n=e_{k}(x \hat{x} \bmod n) \tag{14}
\end{equation*}
$$

Applying decryption function $D_{K^{\prime}}(\cdot)$ to both sides of 14 and noting $D_{K^{\prime}}(1)=1$, we have

$$
\begin{equation*}
1=x \hat{x} \bmod n \tag{15}
\end{equation*}
$$

Given \hat{x}, we can easily compute x using extended Euclidean algorithm.

Problem 6: RSA Common Modulus Failure

Textbook, problem 5.16.

Solution:

(a) We have the following equations:

$$
\begin{align*}
y_{1} & =x^{b_{1}} \bmod n \tag{16}\\
y_{2} & =x^{b_{2}} \bmod n \tag{17}\\
c_{1} & =b_{1}^{-1} \bmod b_{2} \tag{18}\\
c_{2} & =\left(c_{1} b_{1}-1\right) / b_{2} \tag{19}\\
x_{1} & =y_{1}^{c_{1}}\left(y_{2}^{c_{2}}\right)^{-1} \bmod n \tag{20}
\end{align*}
$$

Plugging 17,19 into 20 gives

$$
\begin{align*}
x_{1} & =\left(x^{b_{1} c_{1}}\right)\left(x^{b_{2} c_{2}}\right)^{-1} \bmod n \\
& =\left(x^{b_{1} c_{1}}\right)\left(x^{b_{1} c_{1}-1}\right)^{-1} \bmod n \\
& =x^{b 1 c_{1}+1-b_{1} c_{1}} \bmod n \\
& =x \bmod n \\
& =x \tag{21}
\end{align*}
$$

(b) Applying 18,20 gives

$$
\begin{align*}
c_{1} & =43^{-1} \bmod 7717=2692 \\
c_{2} & =(2692 \times 43-1) / 7717=15 \\
x_{1} & =\left(12677^{2692} \times 14702^{-15}\right) \bmod 18721 \\
& =\left(13145 \times 3947^{-1}\right) \bmod 18721 \\
& =(13145 \times 5668) \bmod 18721 \\
& =15001 \tag{22}
\end{align*}
$$

