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25 Group Property

Let (E,D) be a cryptosystem for which M = C. Each Ek is then a permutation on M.1 The set
of all permutations on M forms a group.2 (E,D) is said to have the group property if the set of
possible encryption functions E = {Ek | k ∈ K} is closed under functional composition ◦. That is,
if k′, k′′ ∈ K, then there exists k ∈ K such that

Ek = Ek′′ ◦ Ek′ .

If it is closed, then it can be shown that (E , ◦) is a subgroup of all permutations on M.
When the cryptosystem is a group, double encryption adds no security against a brute force

attack. Even though the key length has doubled, the number of distinct encryption functions has not
increased. Since every double encryption is same as a single encryption, the double encryption sys-
tem will fall to a brute force attack on the original cryptosystem. This is what we saw in section 24.1
with Double Caesar.

26 Birthday Attack when Cryptosystem is a Group

If a cryptosystem system is a group, then it is subject to a known plaintext “birthday” attack,3 which
reduces the number of keys that must be tried to roughly the square root of what a brute force attack
needs. For example, if the original key length was 56 (as is the case with DES), then only about√

256 = 228 keys need be tried.
Briefly, here’s how it works: Assume (m, c) is a known plaintext-ciphertext pair, so Ek0(m) = c

for Alice’s secret key k0, which we do not know. Choose 228 random keys k1 and encrypt m using
each. Choose another 228 random keys k2 and decrypt c using each. Look for a match (non-
empty intersection) between these two sets. Suppose one is found for k1 and k2, meaning that
Ek1(m) = u = Dk2(c). It follows that Ek2(Ek1(m)) = c, so we have succeeded in finding a key
pair (k1, k2) that works for the pair (m, c).

Because we are assuming the cryptosystem is a group, it follows that there is a key k such that
Ek = Ek2 ◦Ek1 , so Ek(m) = c. Alice’s key k0 also has Ek0(m) = c. If it happens that Ek = Ek0 ,
then we have broken the cryptosystem. Even though we may not be able to quickly find k from
k1 and k2, we have no need of doing so since we can compute Ek from Ek1 and Ek2 , and we can
compute Dk from Dk1 and Dk2 .

Assuming the cryptosystem enjoys reasonable randomness properties, it is unlikely that there
are very many distinct keys k such that Ek = Ek0 , so with significant probability we have cracked

1A permutation on a set S is a function from S → S that is one-to-one and onto.
2A pair (X, ◦), where ◦ is a binary operation on X , is a group if ◦ is associative, X has an identity element, and every

x ∈ X has an inverse.
3Wikipedia states, “In probability theory, the birthday paradox states that given a group of 23 (or more) randomly

chosen people, the probability is more than 50% that at least two of them will have the same birthday.” This is far less
than the 253 people that are needed for the probability to exceed 1/2 that at least one of them was born on a specific day,
say January 1.

http://en.wikipedia.org/wiki/Birthday_paradox
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the system. (For Caesar, there is only one such k.) Using additional plaintext-ciphertext pairs, we
can verify that we have likely found the correct key pair, or repeat this process again if we have not
yet succeeded. I’ve glossed over many assumptions and details, but that’s the basic idea.

The drawback to the birthday attack (from the attacker’s perspective) is that it requires a lot of
storage in order to find a matching element. Nevertheless, if DES were a group, this attack could be
carried out in about a gigabyte of storage, easily within the storage capacity of modern workstations.

27 Data Encryption Standard (DES)

The Data Encryption Standard is a block cipher that operates on 64-bit blocks and uses a 56-bit
key. It was the standard algorithm for data encryption for over 20 years until it became widely
acknowledged that the key length was too short and it was subject to brute force attack. (The new
standard used the Rijndael algorithm and is called AES.)

27.1 Feistel Networks

DES is based on a Feistel network. This is a general method for building an invertible function from
any function f that scrambles bits. It consists of some number of stages. Each stage i maps a pair
of 32-bit words (Li, Ri) to a new pair (Li+1, Ri+1). By applying the stages in sequence, a t-stage
network maps (L0, R0) to (Lt, Rt). The (L0, R0) is the plaintext, and (Lt, Rt) is the corresponding
ciphertext.

Each stage works as follows:
Li+1 = Ri (1)

Ri+1 = Li ⊕ f(Ri,Ki) (2)

Here, Ki is a subkey, which is generally derived in some systematic way from the master key k.
The security of a Feistel-based code lies in the construction of the function f and in the method

for producing the subkeys Ki, However, the invertibility follows just from properties of ⊕.
The inversion problem is to find (Li, Ri) given (Li+1, Ri+1). Equation 1 gives us Ri. Knowing

Ri and Ki, we can compute f(Ri,Ki). We can then solve equation 2 to get

Li = Ri+1 ⊕ f(Ri,Ki)

DES uses a 16 stage Feistel network. The pair L0R0 is constructed from a 64-bit message by a
fixed initial permutation IP. The ciphertext output is obtained by applying IP−1 to R16L16.

The scrambling function f(Ri,Ki) operates on a 32-bit data block and a 48-bit key block. Thus,
a total of 48× 16 = 768 key bits are used. They are all derived in a systematic way from the 56-bit
primary key and are far from independent of each other.

27.2 The Scrambling Function

The scrambling function f(Ri,Ki) is the heart of DES. It operates on a 32-bit data block and a 48-
bit key block. Thus, a total of 48× 16 = 768 key bits are used. They are all derived in a systematic
way from the 56-bit master key k and are far from independent of each other. In a little more detail,
k is split into two 28-bit pieces C and D. At each stage, C and D are rotated by one or two bit
positions. Subkey Ki is then obtained by applying a fixed permutation (transposition) to CD. (See
Table 3.4c of the text.)

The scrambling function itself is rather involved. However, at its heart are eight “S-boxes”.
These are boxes with 6 binary inputs c0, x1, x2, x3, x4, c1 and 4 binary outputs y1, y2, y3, y4. Each
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computes some fixed function in {0, 1}6 → {0, 1}4. Moreover, each S-box has the very special
property that for each of the four possible ways of fixing the values of (c0, c1) to Boolean constants,
the resulting function on the remaining four inputs x1, . . . , x4 is a permutation from {0, 1}4 →
{0, 1}4. Therefore, we can regard an S-box as performing a substitution on four-bit “characters”,
where the substitution performed depends both on the structure of the particular S-box and on the
values of its “control inputs” c0 and c1. The eight S-boxes are all different and are specified by
tables. (See pages 97–99 of the text (Stinson).)

The S-boxes together have a total of 48 input lines. Each of these lines is the output of a
corresponding ⊕-gate. One input of each of these ⊕-gates is connected to a corresponding bit of
the 48-bit subkey Ki. (This is the only place that the key enters into DES.) The other input of each
⊕-gate is connected to one of the 32 bits of the first argument of f . Since there are 48 ⊕-gates and
only 32 bits in the first argument to f , some of those bits get used more than once. The mapping
of input bits to ⊕-gates is called the expansion permutation E and is given on page 100 of the text.
By looking at the table, one sees that the ⊕-gates connected to the six inputs c0, x1, x2, x3, x4, c1

for S-box 1 are in turn connected to the input bits 32, 1, 2, 3, 4, 5, respectively. For S-box 2, they
go to bits 4, 5, 6, 7, 8, 9, etc. Thus, inputs bits 1, 4, 5, 8, 9, . . . 28, 29, 32 are each used twice, and the
remaining input bits are each used once.

Finally, the 32 bits of output from the S-boxes are passed through a fixed permutation P (trans-
position) that spreads out the output bits. The outputs of a single S-box at one stage of DES become
inputs to several different S-boxes at the next stage. This helps provide the desirable “avalanche”
effect, where a change in one input bit spreads out through the network and causes many output bits
to change.

27.3 Security considerations

We have mentioned previously that DES is vulnerable to a brute force attack because of its small key
size of only 56 bits. However, it has turned out to be remarkably resistant to two recently discovered
cryptanalysis attacks, differential cryptanalysis and linear cryptanalysis. The former can break DES
using “only” 247 chosen ciphertext pairs. The latter works with 243 chosen plaintext pairs. Neither
attack is feasible in practice.

DES has now been replaced as a national standard by the new AES (Advanced Encryption
Standard), based on the Rijndael algorithm, developed by two Dutch computer scientists. AES
supports key sizes of 128, 192, and 256 bits and works on 128-bit blocks. We will say more about
it later in the course.


