
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 6 (rev. 1)
Professor M. J. Fischer September 24, 2008

Lecture Notes 6

28 Double DES

Even if the original system is not a group (and DES is not), double encryption still does not result in
a cryptosystem with twice the effective key length. The reason is another “birthday”-style known-
plaintext attack.

Let’s consider the case of double DES. As before, we start with a known plaintext-ciphertext
pair (m, c). We carry out a birthday attack by encrypting m under many different keys, decrypting
c under many different keys, and hope we find a matching element in the resulting two sets. Unlike
the attack described in section 26, we encrypt m and decrypt c using all possible DES keys. Thus,
we are guaranteed of finding at least one match, since if (k1, k2) is the real key pair used in the
double encryption, then Ek1(m) = Dk2(c). If there is only one match, then we have found the
correct key pair and broken the system. If there are several matches, we know that the key pair is
one of the matching pairs. This set is likely to be much much smaller than 256, so they can each
be tried on additional plaintext-ciphertext pairs to find which ones work. (Note that there might be
more than one key pair that results in the same encryption function. In that case, we won’t be able
to know which key pair Alice actually used in generating the ciphertexts, but we will be able to find
a pair that is just as good and that lets us decrypt her messages.)

29 Triple DES

Three key triple DES (3TDES) avoids the birthday attack by using three DES encryptions, i.e.,
Ek3(Ek2(Ek1(m))), giving it an actual key length of 168 bits. While considerably more secure than
single DES, for which a brute force attack requires only 256 decryptions, 3TDES can be broken
(in principle) by a known plaintext attack using about 290 single DES encryptions and 2113 steps.
While this attack is still not practical, the effective security thus lies in the range between 90 and
113, which is much smaller than the apparent 168 bits.1

A variant of triple DES in which the middle step is a decryption instead of an encryption is
known as TDES-EDE, i.e., Ek3(Dk2(Ek1(m))). The variant does not affect the security, but it
means that TDES-EDE encryption and decryption functions can be used to perform single DES
encryptions and decryptions by taking k1 = k2 = k3 = k, where k is the single DES key.

Another variant, two key triple DES (2TDES) uses only two keys k1 and k2, taking k3 = k1.
However, known plaintext attacks or chosen plaintext attacks reduce the effective security to only
80 bits. See Wikipedia for further information on triple DES.

1The effective security measures the amount of work it takes to break a cryptosystem by comparing it with the amount
of work required to carry out a brute force attack on a cryptosystem with keys of that length. Thus, a cryptosystem that
can be broken in time 290 is said to have 90-bit effective security, even if the actual key length is much greater, since it is
no more secure than a system with a 90-bit key.

http://en.wikipedia.org/wiki/Triple_DES

2 CPSC 467a Lecture Notes 6 (rev. 1)

30 Block Ciphers

A b-bit block cipher takes as inputs a key and a b-bit plaintext block and produces a b-bit ciphertext
block as output. Most of the ciphers we have been discussing so far are of this type. Block ciphers
typically operate on fairly long blocks, e.g., 64-bits for DES, 128-bits for Rijndael (AES). Block
ciphers can be designed to resist known-plaintext attacks and can therefore be pretty secure, even if
the same key is used to encrypt a succession of blocks, as is often the case.

Of course, the length messages one wants to send are rarely exactly the block length. To use a
block cipher to encrypt long messages, one first divides the message into blocks of the right length,
padding the last partial block according to a suitable padding rule. Then the block cipher is used
in some chaining mode to encrypt the sequence of resulting blocks. A chaining mode tells how
to encrypt a sequence of plaintext blocks m1,m2, . . . ,mt to produce a corresponding sequence of
ciphertext blocks c1, c2, . . . , ct, and conversely, how to recover the mi’s given the ci’s.

Padding involves more than just sticking 0’s on the end of a message until its length is a multiple
of the block length. The reason is that one must be able to recover the original message from the
padded version. If one tacks on a variable number of 0’s during padding, how many are to be
removed at the end? To solve this problem, a padding rule must include the information about how
much padding was added. There are many ways to do this. One way is to pad each message with
a string of 0’s followed by a fixed-length binary representation of the number of 0’s added. For
example, if the block length is 64, then at most 63 0’s ever need to be added, so a 6-bit length
field is sufficient. A message m is then padded to become m′ = m · 0k · k, where k is a number
in the range [0, 63] and k is its representation as a 6-bit binary number. k is then chosen so that
|m′| = |m| + k + 6 is a multiple of b.

Some standard chaining modes are:

• Electronic Codebook Mode (ECB) – apply cipher to each plaintext block. That is, ci =
Ek(mi) for each i. This becomes in effect a monoalphabetic cipher, where the “alphabet” is
the set of all possible blocks and the permutation is defined by Ek. To decrypt, Bob computes
mi = Dk(ci).

• Cipher Block Chaining Mode (CBC) – encrypt the XOR of the current plaintext block with the
previous ciphertext block to produce the current ciphertext block. That is, ci = Ek(mi⊕ci−1).
To get started, we take c0 = IV, where IV is a fixed initialization vector which we assume is
publicly known. To decrypt, Bob computes mi = Dk(ci) ⊕ ci−1.

• Cipher-Feedback Mode (CFB) – XOR the current plaintext block with the encryption of the
previous ciphertext block. That is, ci = mi⊕Ek(ci−1), where again, c0 is a fixed initialization
vector. To decrypt, Bob computes mi = ci ⊕ Ek(ci−1). Note that Bob is able to decrypt
without using the block decryption function Dk. In fact, it is not even necessary for Ek to be
a one-to-one function (but using a non one-to-one function might weaken security).

• Output Feedback Mode (OFB) – the encryption function is iterated on an initial vector (IV) to
produce a stream of block keys, which in turn are XORed with the successive plaintext blocks
to produce the successive ciphertext blocks. (This is similar to a simple keystream generator.)
That is, ci = mi⊕ki, where ki = Ek(ki−1) is a block key. k0 is a fixed initialization vector IV.
To decrypt, Bob can apply exactly the same method to the ciphertext to get the plaintext, that
is, mi = ci ⊕ ki, where ki = Ek(ki−1).

• Propagating Cipher-Block Chaining Mode (PCBC) – encrypt the XOR of the current plaintext
block, previous plaintext block, and previous ciphertext block. That is, ci = Ek(mi⊕mi−1⊕

CPSC 467a Lecture Notes 6 (rev. 1) 3

ci−1). Here, both m0 and c0 are fixed initialization vectors. To decrypt, Bob computes
mi = Dk(ci) ⊕ mi−1 ⊕ ci−1.

Remarks

1. Both CFB and OFB are closely related to stream ciphers since in both cases, ci is mi XORed
with some function of stuff that came before stage i. Like a one-time pad and other simple
XOR stream ciphers, OFB becomes insecure if the same key is ever reused, for the sequence
of ki’s generated will be the same. CFB, however, avoids this problem, for even if the same
key k is used for two different message sequences mi and m′

i, it will not generally be the case
that mi⊕m′

i = ci⊕c′i; rather, mi⊕m′
i = ci⊕c′i⊕Ek(ci−1)⊕Ek(c′i−1), and the dependency

on k does not drop out.

2. The different modes differ in their sensitivity to data corruption. With ECB and OFB, if Bob
receives a bad block ci, then he cannot recover the corresponding mi, but all good ciphertext
blocks can be decrypted. With CBC and CFB, he needs both good ci and ci−1 blocks in order
to decrypt mi. Therefore, a bad block ci renders both mi and mi+1 unreadable. With PCBC,
a bad block ci renders mj unreadable for all j ≥ i.

3. Other modes can be easily invented. We see that in all cases, ci is computed by some ex-
pression (which may depend on i) built from Ek() and ⊕ applied to blocks c1, . . . , ci−1,
m1, . . . ,mi, and the initialization vectors. Any such equation that can be “solved” for mi

(by possibly using Dk() to invert Ek()) is a suitable chaining mode in the sense that Alice is
able to produce the ciphertext and Bob is able to decrypt it. Of course, the resulting security
properties depend heavily on the particular expression chosen.

