
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 9 (rev. 2)
Professor M. J. Fischer October 6, 2008

Lecture Notes 9

41 Exponentiation: Speeding up the Computation

In section 40 (lecture notes 8), we described how to control the growth in the lengths of numbers
when computing me mod n, for numbers m, e, and n which are 1024 bits long. Nevertheless,
there is still a problem with the naive exponentiation algorithm that simply multiplies m by itself
a total of e − 1 times. Since the value of e is roughly 21024, that many iterations of the main
loop would be required, and the computation would run longer than the current age of the universe
(which is estimated to be 15 billion years). Assuming one loop iteration could be done in one
microsecond (very optimistic seeing as each iteration requires computing a product and remainder
of big numbers), only about 30 × 1012 iterations could be performed per year, and only about
450× 1021 iterations in the lifetime of the universe. But 450× 1021 ≈ 279, far less than e− 1.

The trick here is to use a more efficient exponentiation algorithm based on repeated squaring. To
compute me mod n where e = 2k is a power of two requires only k squarings, i.e., one computes

m0 = m
m1 = (m0 ∗m0) mod n
m2 = (m1 ∗m1) mod n

...
mk = (mk−1 ∗mk−1) mod n.

Clearly, each mi = m2i
mod n. me for values of e that are not powers of 2 can be obtained as the

product modulo n of certain mi’s. In particular, express e in binary as e = (bsbs−1 . . . b2b1b0)2.
Then mi is included in the final product if and only if bi = 1.

It is not necessary to perform this computation in two phases as described above. Rather, the two
phases can be combined together, resulting in a slicker and simpler algorithm that does not require
the explicit storage of the mi’s. I will give two versions of the resulting algorithm, a recursive
version and an iterative version. I’ll write both in C notation, but it should be understood that the C
programs only work for numbers smaller than 216. To handle larger numbers requires the use of big
number functions.

/* computes mˆe mod n recursively */
int modexp(int m, int e, int n)
{
int r;
if (e == 0) return 1; /* mˆ0 = 1 */
r = modexp(m*m % n, e/2, n); /* r = (mˆ2)ˆ(e/2) mod n */
if ((e&1) == 1) r = r*m % n; /* handle case of odd e */
return r;

}

This same idea can be expressed iteratively to achieve even greater efficiency.

http://zoo.cs.yale.edu/classes/cs467/2008f/attach/ln08.html

2 CPSC 467a Lecture Notes 9 (rev. 2)

/* computes mˆe mod n iteratively */
int modexp(int m, int e, int n)
{
int r = 1;
while (e > 0) {

if ((e&1) == 1) r = r*m % n;
e /= 2;
m = m*m % n;

}
return r;

}

The loop invariant is e > 0 ∧ (me0
0 mod n = rme mod n), where m0 and e0 are the initial values

of m and e, respectively. It is easily checked that this holds at the start of each iteration. If the loop
exits, then e = 0, so r is the desired result. Termination is ensured since e gets reduced during each
iteration.

Note that the last iteration of the loop computes a new value of m that is never used. A slight ef-
ficiency improvement results from restructuring the code to eliminate this unnecessary computation.
Following is one way of doing so.

/* computes mˆe mod n iteratively */
int modexp(int m, int e, int n)
{

int r = ((e&1) == 1) ? m % n : 1;
e /= 2;
while (e > 0) {

m = m*m % n;
if ((e&1) == 1) r = r*m % n;
e /= 2;

}
return r;

}

42 Modular Arithmetic

In this and following sections, we review some number theory that is needed for understanding
RSA. These lecture notes only provide a high-level overview. Further details are contained in
course handouts 5–7 and in Chapter 5 of the textbook (Stinson).

42.1 Division theorem: quotient and remainder

Let a, b be integers and assume b > 0. The division theorem asserts that there are unique integers q
(the quotient) and r (the remainder) such that a = bq + r and 0 ≤ r < b. We denote the quotient
by a÷ b and the remainder by a mod b. It follows that

a = b× (a÷ b) + (a mod b).

or equivalently,
a mod b = a− b× (a÷ b).

CPSC 467a Lecture Notes 9 (rev. 2) 3

The latter actually defines mod in terms of ‘÷’. The ‘÷’ operator in turn can be defined as a÷ b =
ba/bc, where ‘/’ is ordinary real division and bxc, the floor of x, is the greatest integer less than or
equal to x.

When either a or b is negative, there is no consensus on the definition of mod. According to
our definition, a mod b is always in the range [0 . . . b− 1], even when a is negative. For example,

(−5) mod 3 = (−5)− 3× ((−5)÷ 3) = −5− 3× (−2) = 1.

In the C programming language, the mod operator % is defined differently, so (a % b) 6= (a mod b)
when a is negative and b positive.1

42.2 Divides

We say that b divides a (exactly) and write b |a in case a mod b = 0.

Fact If d |(a + b), then either d divides both a and b, or d divides neither of them.

To see this, suppose d | (a + b) and d | a. Then by the division theorem, a + b = dq1 and a = dq2

for some integers q1 and q2. Substituting for a and solving for b, we get

b = dq1 − dq2 = d(q1 − q2).

But this implies d |b, again by the division theorem.

42.3 Modular Arithmetic

We just saw that mod is a binary operation on integers. Mod is also used to denote a relationship
on integers:

a ≡ b (mod n) iff n |(a− b).

That is, a and b have the same remainder when divided by n. An immediate consequence of this
definition is that

a ≡ b (mod n) iff (a mod n) = (b mod n).

Thus, the two notions of mod aren’t so different after all!
For fixed n, the resulting two-place relationship ≡ is an equivalence relation. Its equivalence

classes are called residue classes modulo n and are denoted using the square-bracket notation [b] =
{a | a ≡ b (mod n)}. For example, for n = 7, we have [10] = {. . . − 11,−4, 3, 10, 17, . . .}.
Clearly, [a] = [b] iff a ≡ b (mod n). Thus, [−11], [−4], [3], [10], [17] are all names for the same
equivalence class. We choose the unique integer in the class that is in the range [0 . . . (n− 1)] to be
the canonical or preferred name for the class. Thus, the canonical name for the class containing 10
is [10 mod 7] = [3].

The relation ≡ (mod n) is a congruence relation with respect to addition, subtraction, and
multiplication of integers. This means that for each of these arithmetic operations �, if a ≡ a′

(mod n) and b ≡ b′ (mod n), then a�b ≡ a′�b′ (mod n). This implies that the class containing
the result of a + b, a − b, or a × b depends only on the classes to which a and b belong and not
the particular representatives chosen. Hence, we can perform arithmetic on equivalence classes by
operating on their names. The result class will not depend on the particular representatives chosen.

1For those of you who are interested, the C standard defines a% b to be the number satisfying the equation (a/b)∗ b+
(a % b) = a. C also defines a/b to be the result of rounding the real number a/b towards zero, so −5/3 = −1. Hence,
−5 % 3 = −5− (−5/3) ∗ 3 = −5 + 3 = −2 in C.

4 CPSC 467a Lecture Notes 9 (rev. 2)

Let Z denote the set of all integers, positive and negative. Let Zn ⊆ Z contain the non-negative
integers less than n, that is,

Zn = {0, 1, . . . , n− 1}.

We now define addition, subtraction, and multiplication operations directly on Zn:

a⊕ b = (a + b) mod n
a	 b = (a− b) mod n
a⊗ b = (a× b) mod n

(1)

We will sometimes write +,−,× in place of ⊕,	,⊗, respectively, when it is clear from context
that they are to be regarded as operations over Zn rather than over Z.

42.4 Greatest common divisor

The greatest common divisor of two integers a and b, written gcd(a, b), is the largest integer d such
that d |a and d |b. The gcd is always defined since 1 is a divisor of every integer, and the divisor of
a number cannot be larger (in absolute value) than the number itself.

The gcd of a and b is easily found if a and b are already given in factored form. Namely,
let pi be the ith prime and write a =

∏
pei

i and b =
∏

p fi
i . Then gcd(a, b) =

∏
p
min(ei,fi)
i .

However, factoring is believed to be a hard problem, and no polynomial-time factorization algorithm
is currently known. Indeed, if it were, then Eve could use it to break RSA, and RSA would be of
no interest as a cryptosystem. Fortunately, gcd(a, b) can be computed efficiently without the need
to factor a and b using the famous Euclidean algorithm.

42.5 Euclidean algorithm

Euclid’s algorithm is remarkable, not only because it was discovered a very long time ago, but also
because it works without knowing the factorization of a and b. It relies on several identities satisfied
by the gcd function. In the following, assume a > 0 and a ≥ b ≥ 0:

gcd(a, b) = gcd(b, a) (2)

gcd(a, 0) = a (3)

gcd(a, b) = gcd(a− b, b) (4)

Identity 2 is obvious from the definition of gcd. Identity 3 follows from the fact that every positive
integer divides 0. Identity 4 follows from the Fact in section 42.2.

These identities allow the problem of computing gcd(a, b) to be reduced to the problem of
computing gcd(a − b, b), which is “smaller” problem as long as b > 0. Here we measure the size
of the problem gcd(a, b) by the sum a + b of the two arguments. This leads to an easy recursive
algorithm shown in Figure 42.1. Nevertheless, this algorithm is not very efficient, as you will
quickly discover if you attempt to use it, say, to compute gcd(1000000, 2).

Repeatedly applying (4) to the pair (a, b) until it can’t be applied any more produces the se-
quence of pairs (a, b), (a− b, b), (a− 2b, b), . . . , (a− qb, b). The sequence stops when a− qb < b.
But the number of times you can subtract b from a while remaining non-negative is just the quotient
ba/bc, and the amount a− qb that is left is just the remainder a mod b. Hence, one can go directly
from the pair (a, b) to the pair (a mod b, b), giving the identity

gcd(a, b) = gcd(a mod b, b). (5)

CPSC 467a Lecture Notes 9 (rev. 2) 5

1 int gcd(int a, int b)
2 {
3 if (a < b) return gcd(b, a);
4 else if (b == 0) return a;
5 else return gcd(a-b, b);
6 }

Figure 42.1: Simple (but inefficient) gcd algorithm.

Replacing a-b with a%b in line 5 of Algorithm 42.1 (using C notation) yields an exponentially
faster algorithm, one that can be shown to require at most in O(n) stages, where n is the sum
of the lengths of a and b when written in binary notation, and each stage involves at most one
remainder computation. In addition, line 3 of Algorithm 42.1 can be eliminated if the arguments to
the recursive call in line 5 are reversed. In this way, we have a ≥ b for all but the top-level call on
gcd(a, b), eliminating the roughly half of the recursive calls whose only effect is to swap the order
of arguments.

The full Euclidean algorithm is shown in Figure 42.2.

1 int gcd(int a, int b)
2 {
3 if (b == 0) return a;
4 else return gcd(b, a%b);
5 }

Figure 42.2: The Euclidean algorithm.

	Exponentiation: Speeding up the Computation
	Modular Arithmetic
	Division theorem: quotient and remainder
	Divides
	Modular Arithmetic
	Greatest common divisor
	Euclidean algorithm

