YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 18 (rev. 1)
Professor M. J. Fischer November 10, 2008

Lecture Notes 18

79 Brief Review of Squares and Square Roots

We have discussed several results about quadratic residues and square roots modulo odd primes
and modulo composite numbers, particularly for the special case of the product of two distinct odd
primes. I want to summarize these results to help you keep them straight and to give a greater
perspective on how they relate to each other.

79.1 Testing versus computing

Testing for the existence of an element with specific properties is never harder than finding it, and it
can be much easier. For example, finding a proper prime divisor of a number n is equivalent to the
factoring problem, a problem believed to be intractable. On the other hand, testing for the existence
of a proper prime divisor of n is equivalent to testing if n is prime, a problem for which we have
shown feasible probabilistic solutions.

Similarly, testing if a number a is a quadratic residue modulo n is the same thing as testing if
it has a square root modulo n. This problem is never harder than the problem of finding a square
root since, given the ability to find square roots, one can test if a has a square root by trying to find
it! If one succeeds, then a is definitely a quadratic residue. If one fails, then either it’s because a
doesn’t have a square root or because the algorithm doesn’t always work and therefore isn’t really
a solution to the problem. Of course, an algorithm can fail by running a long time without halting,
so in order to infer that a is not a quadratic residue, we must be able to detect that our square root
algorithm has failed, either because it has explicitly halted with a failure indication, it has produced
an incorrect answer that we can verify is wrong, or it has already run longer on the given input than
it runs on any quadratic residue of that length.

79.2 Prime versus composite modulus

When the modulus is an odd prime p, testing for existence of and finding square roots are both easy.
Testing is simply done using the Euler Criterion (section[64] lecture notes 15). Square roots can be
found using Shank’s algorithm (section [66] lecture notes 15).

When the modulus n = pq is the product of two distinct odd primes p and ¢ and both are known,
the proof of Claim [2|(section [63} lecture notes 15) establishes that a is a quadratic residue modulo n
if and only if it is a quadratic residue modulo both p and q. It also indicates how to use the Chinese
Remainder theorem to find a square root of @ modulo n given square roots b, and b, of a modulo p
and g, respectively.

On the other hand, when n = pq but p and ¢ are not known, no feasible algorithm is known
for testing if an arbitrary number is a quadratic residue modulo n. Here the situation is a bit more
complicated, for it is easy for 1/2 of the numbers in Z; to determine that they are not quadratic
residues modulo n. Namely, the numbers with Jacobi symbol (%) = —1 are exactly the numbers
a € Q% U QL which are quadratic residues modulo one of p or g but not both. (See section
lecture notes 15.) The Jacobi symbol is easily computed by the method of section lecture

http://zoo.cs.yale.edu/classes/cs467/2008f/attach/ln15.html
http://zoo.cs.yale.edu/classes/cs467/2008f/attach/ln15.html
http://zoo.cs.yale.edu/classes/cs467/2008f/attach/ln15.html
http://zoo.cs.yale.edu/classes/cs467/2008f/attach/ln15.html
http://zoo.cs.yale.edu/classes/cs467/2008f/attach/ln16.html

2 CPSC 467a Lecture Notes 18 (rev. 1)

notes 16. However, the numbers in ¢ € Q% U Q1! all have Jacobi symbol 1, but half of them
are quadratic residues modulo n wherease the other half are not, and there is no known feasible
algorithm for distinguishing the quadratic residues from the non-residues. This is the basis for
the Goldwasser-Micali cryptosystem presented in section lecture notes 15, It follows from the
remarks in section above that also no feasible algorithm is known for computing square roots
of quadratic residues modulo n.

80 Combining Signatures with Encryption

One often wants to encrypt messages for privacy and sign them for integrity and authenticity. Sup-
pose Alice has a cryptosystem (£, D) and a signature system (.5, V'). Three possibilities come to
mind for encrypting and signing a message m:

1. Alice signs the encrypted message, that is, she sends (E(m), S(E(m))).

2. Alice encrypts the signed message, that is, she sends E(m o S(m)). Here we assume a
standard way of representing the ordered pair (m, S(m)) as a string, which we denote by
mo S(m).

3. Alice encrypts only the first component of the signed message, that is, she sends the pair

(E(m), S(m)).

Note that method[3]is quite problematic since signature functions make no guarantee of privacy.
In particular, if (S, V) is, say, an RSA signature scheme, we can define a new signature scheme
(S, V"):
S'(m) =moS(m);

V'(m,s) = Ft(s=mot AV(m,t)).

Clearly, the ability to forge signatures in (S, V’) implies the ability to forge signatures in (S, V),
for if (m, s) is a valid signed message in (S’, V'), then (m,t) is a valid signed message in (S, V),
where ¢ is the second component of the ordered pair encoded by s. Thus, the new scheme is at least
as secure as the original. But with (S, V”), the plaintext message is part of the signature itself, so if
(S’, V') is used as the signature scheme in method above, there is no privacy.

Think about the pros and cons of the other two possibilities. For example, method [1| allows a
third party to verify that the encrypted message was signed by Alice even without being able to
decrypt it. Whether or not this is desirable is application-dependent. The point is, subtlties emerge
when cryptographic protocols are combined, even in a simple case like this where it is only desired
to combine privacy with authentication.

81 ElGamal Signatures

The ElGamal signature scheme uses ideas similar to those of his encryption system, which we have
already seen. The private signing key consists of a primitive root g of a prime p and an exponent
x. The public verification key consists of g, p, and the number a = ¢* mod p. The signing and
verification algorithms are given below:

http://zoo.cs.yale.edu/classes/cs467/2008f/attach/ln16.html
http://zoo.cs.yale.edu/classes/cs467/2008f/attach/ln16.html
http://zoo.cs.yale.edu/classes/cs467/2008f/attach/ln15.html

CPSC 467a Lecture Notes 18 (rev. 1) 3

To sign m:
* 1
1. Choose random y € Z¢(p).
2. Compute b = ¢g¥ mod p.
3. Compute ¢ = (m — zb)y~! mod ¢(p).
4. Output signature s = (b, c).

To verify (m, s), where s = (b, ¢):
1. Check that a’b® = g™ (mod p).

Why does this work? Plugging in for a and b, we see that
a’b* = (9°)°(9")° = g™*¥ = g™ (mod p)

since xb + yc = m (mod ¢(p)).

82 Digital Signature Algorithm (DSA)

The commonly-used Digital Signature Algorithm (DSA) is a variant of ElGamal signatures. Also
called the Digital Signature Standard (DSS), it is described in U.S. Federal Information Processing
Standard FIPS 186—2E] It uses two primes: p, which is 1024 bits longE] and ¢, which is 160 bits
long and satisfies ¢ | (p — 1). Here’s how to find them: Choose ¢ first, then search for z such that
zq + 1 is prime and of the right length. Choose p = zq + 1 for such a z.

Now let g = h(P~1/4 mod p for any h € Z,, for which g > 1. This ensures that g € Z; is a
non-trivial ¢*" root of unity modulo p. Let = € Z; and compute a = g* mod p. The parameters p,
q, and g are common to the public and private keys. In addition, the private signing key contains x
and the public verification key contains a.

Here’s how signing and verification work:

To sign m:

1. Choose random y € Z;.

2. Compute b = (g¥ mod p) mod gq.
3. Compute ¢ = (m + xb)y~! mod q.
4. Output signature s = (b, c).

To verify (m, s), where s = (b, ¢):

Verify that b, c € Z7; reject if not.
Compute u; = mc~! mod q.
Compute us = bc™! mod gq.

Compute v = (¢g**a"? mod p) mod q.
Check v = b.

AR

To see why this works, note that since g9 =1 (mod p), then

r=s (mod q) implies g¢" = g¢° (mod p).

'Recall that ¢(p) = p — 1 since p is prime.

% Available at http://csrc.nist.gov/publications/fips/fips 186-2/fips186-2-change1.pdf,

3The original standard specified that the length L of p should be a multiple of 64 lying between 512 and 1024.
However, Change Notice 1 of FIPS 186-2 requires L = 1024.

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

4 CPSC 467a Lecture Notes 18 (rev. 1)

This follows from the fact that g is a ¢* root of unity modulo p, so g" "9 = ¢"(¢9)* = ¢" (mod p)
for any u. Hence,

Ul U me~ 1 4axbe1

gta? =g = ¢Y (mod p).
It follows that
g“*a" mod p = ¢¥ mod p

and hence
Uy U

v = (¢g""a"? mod p) mod g = (¢¥ mod p) mod q = b,

as desired. (Notice the shift between equivalence modulo p and equality of remainders modulo p.)

Remarks

DSA introduces this new element of computing a number modulo p and then modulo ¢. Call this
function f, ,(n) = (n mod p) mod ¢. This is not the same as n mod 7 for any number r, nor is it
the same as (n mod ¢) mod p.

To understand better what’s going on, let’s look at an example. Take p = 29 and ¢ = 7. Then
7|(29—1), so this is a valid DSA prime pair. The table below lists the first 29 values of y = fag 7(n):

7 8 91011121314151617 18 192021222324 25262728
01234560123456012345¢60

n|0123456
y| 0123456
The sequence of function values repeats after this point with a period of length 29. Note that it both
begins and ends with 0, so there is a double 0 every 29 values. That behavior cannot occur modulo
any number 7. That behavior is also different from f7 29(n), which is equal to n mod 7 and has
period 7. (Why?)

	Brief Review of Squares and Square Roots
	Testing versus computing
	Prime versus composite modulus

	Combining Signatures with Encryption
	ElGamal Signatures
	Digital Signature Algorithm (DSA)

