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Solutions to Problem Set 4

Due on Wednesday, March 24, 2010.

In the problems below, “textbook” refers to Wade Trapp and Lawrence C. Washington, Introduction
to Cryptography with Coding Theory, Second Edition, Prentice-Hall, 2006.

Problem 1: Divides and mod

Textbook, exercise 3-7.
Solution: Let P(n) be the multi-set that includes all prime factors of n. For example, P(8) =

{2, 2, 2} and P(12) = {2, 2, 3}.

(a) ab ≡ 0 (mod p) implies that p | ab. Because p is prime, we have either p ∈ P(a) or
p ∈ P(b) (or both). In the first case, p | a and thus a ≡ 0 (mod p). In the second case, p | b
and thus b ≡ 0 (mod p).

(b) n | ab implies that P(n) ⊆ P(ab). gcd(a, n) = 1 implies that P(n) 6⊂ P(a). Therefore, it
follows that P(n) ⊆ P(b), and thus n | b.

Problem 2: Chinese Remainder theorem

Textbook, exercise 3-10.
Solution: Assume the smallest number is x. Then we set up the following formulas according

to the available information.

x ≡ 1 (mod 3)
x ≡ 2 (mod 4)
x ≡ 3 (mod 5)

Let n = 3×4×5 = 60. The above system has the same form as in Chinese remainder theorem and
thus has a unique solution in Zn. Let Ni = n/ni and Mi = N−1

i mod ni, for 1 ≤ i ≤ 3. Using
extended Euclidean algorithm to compute Mi, we have

N1 = 20,M1 = 2
N2 = 15,M2 = 3
N3 = 12,M3 = 3

Then x =
(∑3

i=1 aiMiNi

)
mod n = 58.

Let y be the next smallest number. We know that y = 58 + 60 = 118, because x ≡ y mod 60.



2 Solutions to Problem Set 4

Problem 3: Euler theorem

Textbook, exercise 3-12.
Solution: Because 101 is prime, we have φ(101) = 100. Since 2 is relatively prime to 101,

2 ∈ Z∗
101. By Euler’s theorem,

2100 mod 101 = 1

Let x be the remainder of dividing 210203 by 101. Then

x ≡ 210203 ≡ (2100)102 × 23 ≡ 8 (mod 101)

Thus, x = 8.

Problem 4: Order

Textbook, exercise 3-20.
Solution:

(a) gcd(a, n) = 1 implies that a ∈ Z∗
n. By Euler’s theorem, aφ(n) ≡ 1 (mod n). Thus r ≤

φ(n), because r is the smallest positive integer such that ar ≡ 1 (mod n).

(b) am ≡ ark ≡ (ar)k ≡ 1k ≡ 1 (mod n).

(c) at ≡ aqr+s ≡ (ar)q × as = as (mod n). Because at ≡ 1 (mod n), we have as ≡ 1
(mod n).

(d) By definition, r is the smallest positive integer such that ar ≡ 1 (mod n). It follows that
s = 0 because as ≡ 1 (mod n) and 0 ≤ s < r. Therefore, t = qr and thus r | t.

(e) Combining parts (b) and (c) gives that at ≡ 1 (mod n) iff ordn(a) | t. It follows that
ordn(a) | φ(n) because aφ(n) ≡ 1 (mod n).

Problem 5: Rabin cryptosystem

Textbook, exercise 3-27.
Solution:

(a) • Assume n - m. Then m ∈ Z∗
n and thus x has 4 square roots module n. Thus, each

time the machine has a probability of 1/4 returning the meaningful message m. The
expected number of trials is thus 4.

• Assume p | m and q - m. Then x has 2 square roots module n. Thus, each time the
machine has a probability of 1/2 returning the meaningful message m. The expected
number of trials is thus 2.

• Assume q | m and p - m. The analysis is similar to the previous case and thus the
expected number of trails is 2.

• Assume n | m. Then x = 0. This is a special case and thus should be easily decrypted.

(b) A good message m is in Z∗
n. It is hard for Oscar to determine m, because it is believed that

there is no feasible algorithm to compute the square root of a number in Z∗
n without knowing

the factorization of n.
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(c) Eve chooses m = 1 and computes x = m2 mod n = 1. Then Eve repeatedly feeds the
machine with x until 2 different numbers a,−a are obtained, such that a and −a are not
equal to 1 or −1 module n. This is possible because x ∈ Z∗

n and thus has 4 different square
roots module n. Therefore, a+ 1 and a− 1 are both non-zero. Since

0 ≡ a2 − 1 ≡ (a+ 1)(a− 1) (mod pq),

we have either p | (a+1) or q | (a+1). Without loss of generality, assume p | (a+1). Then
Eve computes p = gcd(a+ 1, n) and q = n/p.

Problem 6: Adaptive chosen ciphertext attack against RSA

Textbook, exercise 6-7.
Solution: We know that 2 is relatively prime to n because n is a product of two odd primes.

Therefore, 2 ∈ Z∗
n. By Euler’s theorem, 2φ(n) ≡ 1 (mod n). By the definition of RSA algorithm,

ed ≡ 1 (mod φ(n)). Thus, we have

(2ec)d ≡ (2eme)d ≡ 2edmed ≡ 2m (mod n)

Let x = Dd(2ec mod n), where D is the decryption function used by Nelson. After obtaining x
from Nelson, Eve computes the inverse of 2 module n by the extended Euclidean algorithm. Then
Eve computes m = (2−1x) mod n.

Problem 7: Same modulus attack on RSA

Textbook, exercise 6-16.
Solution: Since eA and eB are relatively prime, gcd(eA, eB) = 1 and thus xeA + yeB = 1

for some integers x and y. Using extended Euclidean algorithm to solve this linear Diophantine
equation, Eve gets a working pair (x, y). Then we have

(cA)x(cB)y ≡ (meA)x(meB )y ≡ mxeA+yeB ≡ m (mod n)

Thus, after intercepting cA and cB , Eve computes m = [(cA)x(cB)y] mod n.

Problem 8: RSA puzzle

Textbook, exercise 6-23.
Solution: Since gcd(e, 12345) = 1, ex + 12345y = 1 for some integers x and y. Using

extended Euclidean algorithm to solve this linear Diophantine equation, we get a working pair
(x, y). Since m12345 ≡ 1 (mod n), we have

cx ≡ (me)x ≡ (me)x(m12345)y ≡ mex+12345y ≡ m (mod n)

Thus, we decrypt m by computing cx mod n.


