Solutions to Problem Set 4

Due on Wednesday, March 24, 2010.

In the problems below, "textbook" refers to Wade Trapp and Lawrence C. Washington, Introduction to Cryptography with Coding Theory, Second Edition, Prentice-Hall, 2006.

Problem 1: Divides and mod

Textbook, exercise 3-7.
Solution: Let $\mathcal{P}(n)$ be the multi-set that includes all prime factors of n. For example, $\mathcal{P}(8)=$ $\{2,2,2\}$ and $\mathcal{P}(12)=\{2,2,3\}$.
(a) $a b \equiv 0(\bmod p)$ implies that $p \mid a b$. Because p is prime, we have either $p \in \mathcal{P}(a)$ or $p \in \mathcal{P}(b)$ (or both). In the first case, $p \mid a$ and thus $a \equiv 0(\bmod p)$. In the second case, $p \mid b$ and thus $b \equiv 0(\bmod p)$.
(b) $n \mid a b$ implies that $\mathcal{P}(n) \subseteq \mathcal{P}(a b) . \operatorname{gcd}(a, n)=1$ implies that $\mathcal{P}(n) \not \subset \mathcal{P}(a)$. Therefore, it follows that $\mathcal{P}(n) \subseteq \mathcal{P}(b)$, and thus $n \mid b$.

Problem 2: Chinese Remainder theorem

Textbook, exercise 3-10.
Solution: Assume the smallest number is x. Then we set up the following formulas according to the available information.

$$
\begin{aligned}
& x \equiv 1(\bmod 3) \\
& x \equiv 2(\bmod 4) \\
& x \equiv 3(\bmod 5)
\end{aligned}
$$

Let $n=3 \times 4 \times 5=60$. The above system has the same form as in Chinese remainder theorem and thus has a unique solution in \mathbf{Z}_{n}. Let $N_{i}=n / n_{i}$ and $M_{i}=N_{i}^{-1} \bmod n_{i}$, for $1 \leq i \leq 3$. Using extended Euclidean algorithm to compute M_{i}, we have

$$
\begin{aligned}
& N_{1}=20, M_{1}=2 \\
& N_{2}=15, M_{2}=3 \\
& N_{3}=12, M_{3}=3
\end{aligned}
$$

Then $x=\left(\sum_{i=1}^{3} a_{i} M_{i} N_{i}\right) \bmod n=58$.
Let y be the next smallest number. We know that $y=58+60=118$, because $x \equiv y \bmod 60$.

Problem 3: Euler theorem

Textbook, exercise 3-12.
Solution: Because 101 is prime, we have $\phi(101)=100$. Since 2 is relatively prime to 101 , $2 \in \mathbf{Z}_{101}^{*}$. By Euler's theorem,

$$
2^{100} \bmod 101=1
$$

Let x be the remainder of dividing 2^{10203} by 101 . Then

$$
x \equiv 2^{10203} \equiv\left(2^{100}\right)^{102} \times 2^{3} \equiv 8(\bmod 101)
$$

Thus, $x=8$.

Problem 4: Order

Textbook, exercise 3-20.

Solution:

(a) $\operatorname{gcd}(a, n)=1$ implies that $a \in \mathbf{Z}_{n}^{*}$. By Euler's theorem, $a^{\phi(n)} \equiv 1(\bmod n)$. Thus $r \leq$ $\phi(n)$, because r is the smallest positive integer such that $a^{r} \equiv 1(\bmod n)$.
(b) $a^{m} \equiv a^{r k} \equiv\left(a^{r}\right)^{k} \equiv 1^{k} \equiv 1(\bmod n)$.
(c) $a^{t} \equiv a^{q r+s} \equiv\left(a^{r}\right)^{q} \times a^{s}=a^{s}(\bmod n)$. Because $a^{t} \equiv 1(\bmod n)$, we have $a^{s} \equiv 1$ $(\bmod n)$.
(d) By definition, r is the smallest positive integer such that $a^{r} \equiv 1(\bmod n)$. It follows that $s=0$ because $a^{s} \equiv 1(\bmod n)$ and $0 \leq s<r$. Therefore, $t=q r$ and thus $r \mid t$.
(e) Combining parts (b) and (c) gives that $a^{t} \equiv 1(\bmod n)$ iff $\operatorname{ord}_{\mathrm{n}}(\mathrm{a}) \mid$ t. It follows that $\operatorname{ord}_{\mathrm{n}}(\mathrm{a}) \mid \phi(\mathrm{n})$ because $a^{\phi(n)} \equiv 1(\bmod n)$.

Problem 5: Rabin cryptosystem

Textbook, exercise 3-27.

Solution:

(a) - Assume $n \nmid m$. Then $m \in \mathbf{Z}_{n}^{*}$ and thus x has 4 square roots module n. Thus, each time the machine has a probability of $1 / 4$ returning the meaningful message m. The expected number of trials is thus 4 .

- Assume $p \mid m$ and $q \nmid m$. Then x has 2 square roots module n. Thus, each time the machine has a probability of $1 / 2$ returning the meaningful message m. The expected number of trials is thus 2 .
- Assume $q \mid m$ and $p \nmid m$. The analysis is similar to the previous case and thus the expected number of trails is 2 .
- Assume $n \mid m$. Then $x=0$. This is a special case and thus should be easily decrypted.
(b) A good message m is in \mathbf{Z}_{n}^{*}. It is hard for Oscar to determine m, because it is believed that there is no feasible algorithm to compute the square root of a number in \mathbf{Z}_{n}^{*} without knowing the factorization of n.
(c) Eve chooses $m=1$ and computes $x=m^{2} \bmod n=1$. Then Eve repeatedly feeds the machine with x until 2 different numbers $a,-a$ are obtained, such that a and $-a$ are not equal to 1 or -1 module n. This is possible because $x \in \mathbf{Z}_{n}^{*}$ and thus has 4 different square roots module n. Therefore, $a+1$ and $a-1$ are both non-zero. Since

$$
0 \equiv a^{2}-1 \equiv(a+1)(a-1)(\bmod p q),
$$

we have either $p \mid(a+1)$ or $q \mid(a+1)$. Without loss of generality, assume $p \mid(a+1)$. Then Eve computes $p=\operatorname{gcd}(a+1, n)$ and $q=n / p$.

Problem 6: Adaptive chosen ciphertext attack against RSA

Textbook, exercise 6-7.
Solution: We know that 2 is relatively prime to n because n is a product of two odd primes. Therefore, $2 \in \mathbf{Z}_{n}^{*}$. By Euler's theorem, $2^{\phi(n)} \equiv 1(\bmod n)$. By the definition of RSA algorithm, $e d \equiv 1(\bmod \phi(n))$. Thus, we have

$$
\left(2^{e} c\right)^{d} \equiv\left(2^{e} m^{e}\right)^{d} \equiv 2^{e d} m^{e d} \equiv 2 m(\bmod n)
$$

Let $x=D_{d}\left(2^{e} c \bmod n\right)$, where D is the decryption function used by Nelson. After obtaining x from Nelson, Eve computes the inverse of 2 module n by the extended Euclidean algorithm. Then Eve computes $m=\left(2^{-1} x\right) \bmod n$.

Problem 7: Same modulus attack on RSA

Textbook, exercise 6-16.
Solution: Since e_{A} and e_{B} are relatively prime, $\operatorname{gcd}\left(e_{A}, e_{B}\right)=1$ and thus $x e_{A}+y e_{B}=1$ for some integers x and y. Using extended Euclidean algorithm to solve this linear Diophantine equation, Eve gets a working pair (x, y). Then we have

$$
\left(c_{A}\right)^{x}\left(c_{B}\right)^{y} \equiv\left(m^{e_{A}}\right)^{x}\left(m^{e_{B}}\right)^{y} \equiv m^{x e_{A}+y e_{B}} \equiv m(\bmod n)
$$

Thus, after intercepting c_{A} and c_{B}, Eve computes $m=\left[\left(c_{A}\right)^{x}\left(c_{B}\right)^{y}\right] \bmod n$.

Problem 8: RSA puzzle

Textbook, exercise 6-23.
Solution: Since $\operatorname{gcd}(e, 12345)=1, e x+12345 y=1$ for some integers x and y. Using extended Euclidean algorithm to solve this linear Diophantine equation, we get a working pair (x, y). Since $m^{12345} \equiv 1(\bmod n)$, we have

$$
c^{x} \equiv\left(m^{e}\right)^{x} \equiv\left(m^{e}\right)^{x}\left(m^{12345}\right)^{y} \equiv m^{e x+12345 y} \equiv m(\bmod n)
$$

Thus, we decrypt m by computing $c^{x} \bmod n$.

