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Automated cryptanalysis

Problem set 1 is to explore a simple automated strategy for
breaking a Caesar cipher using letter frequency analysis.

Basically, the idea is to generate all 26 possible decryptions of a
given ciphertext c and choose the message that is most likely
according to the message distribution.

The method (explained in the assignment) requires generating
random numbers according to an arbitrary distribution over the
26-letter alphabet.
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Choosing uniformly from a finite set

The system-provided function rand() produces a pseudo-random
integer in the set {0, . . . , RAND MAX}.

To get a number in the set {0, . . . , n − 1}, one typically computes
rand()%n.

Unfortunately, the result is not quite uniformly distributed unless n
divides RAND MAX + 1.

Handout 3 describes how to fix this problem.
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Generating a random double

To find an approximately uniformly-distributed double x in the
semi-open interval [0, 1), one wants to compute

rand()/(RAND MAX + 1).

Unfortunately, this can cause integer overflow, since RAND MAX+1 is
typically too large to represent as an int.

Again, see Handout 3 for hints on how to solve this problem.

Michael J. Fischer CPSC 467b 5/21

http://zoo.cs.yale.edu/classes/cs467/2010s/handouts/ho03.pdf


Outline Notes on PS1 Classical ciphers Techniques DES

Choosing from an arbitrary finite distribution

Now, suppose P is a probability distribution over the finite set
{0, . . . , n − 1}.

We’d like to generate a random k ∈ {0, . . . , n − 1} distributed
according to P.

Partition the unit interval into n semi-open subintervals,
where the i th subinterval has length P(i).

Generate a random x ∈ [0, 1).

Find the subinterval P(k) that contains x and return k .

How to efficiently find k from x requires designing an appropriate
data structure to represent P.
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Hill cipher

Encrypts groups of letters at once to mask letter frequencies.

Based on linear algebra.

The key is, say, a non-singular 3× 3 matrix K .

The message m is divided into vectors mi of 3 letters each.

Encryption is just the matrix-vector product ci = Kmi .

Decryption uses the matrix inverse, mi = K−1ci .

Unfortunately, the Hill cipher succumbs to a known plaintext
attack. Given three linearly independent vectors m1, m2, and m3

and the corresponding ciphertexts ci = Kmi , i = 1, 2, 3, it is
straightforward to solve for K .
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Polyalphabetic ciphers

Another way to strengthen monoalphabetic ciphers is to use
different substitutions for different letter positions.

Choose, say, 10 different alphabet permutations k1, . . . , k10.

Use k1 for the first letter of m, k2 for the second letter, etc.

Repeat this sequence after every 10 letters.

While this is much harder to break than monoalphabetic ciphers,
letter frequency analysis can still be used.

Every 10th letter is encrypted using the same permutation, so the
submessage consisting of just those letters still exhibits normal
English language letter frequencies.
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Transposition

Methods discussed so far are based on letter substitution.

Another technique is to rearrange the letters of the plaintext.

Example: Write a plaintext message into a matrix by rows and
read it out by columns.

When used in combination with substitution techniques,
transposition can be quite effective.

Most practical symmetric cryptosystems are built by composing
many stages of substitutions and transpositions.
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Composition of Ciphers

Let (E ′, D ′) and (E ′′, D ′′) be ciphers.
Their composition is the cipher (E , D) with keys of the form
k = (k ′′, k ′), where

E(k ′′,k ′)(m) = E ′′k ′′(E ′k ′(m))

D(k ′′,k ′)(c) = D ′k ′(D ′′k ′′(m)).

Can express this using functional composition.
h = f ◦ g is the function such that h(x) = f (g(x)).

Using this notation, we can write E(k ′′,k ′) = E ′′k ′′ ◦ E ′k ′ and
D(k ′′,k ′) = D ′k ′ ◦ D ′′k ′′ .
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Security of composition

Composition might or might not give a stronger cipher.
Can be difficult to analyze.

Practical symmetric cryptosystems such as DES and AES are built
as a composition of simpler systems.

Each component offers little security by itself, but when composed,
the layers obscure the message to the point that it is difficult for
an adversary to recover.

The trick is to find ciphers that successfully hide useful information
from a would-be attacker when used in concert.

Michael J. Fischer CPSC 467b 11/21



Outline Notes on PS1 Classical ciphers Techniques DES

Double Encryption

Double encryption is when a cryptosystem is composed with itself.
Each message is encrypted twice using two different keys k ′ and
k ′′, so E 2

(k ′′,k ′) = Ek ′′ ◦ Ek ′ and D2
(k ′′,k ′) = Dk ′ ◦ Dk ′′ .

(E , D) is the underlying or base cryptosystem and (E 2, D2) is the
doubled cryptosystem. M and C are unchanged, but K2 = K ×K.

The size of the keyspace is squared, resulting in an apparent
doubling of the effective key length and making a brute force
attack much more costly.

However, it does not always increase the security of a cryptosystem
as much as one might näıvely think, for other attacks may become
possible.
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Example: Double Caesar

Consider Double Caesar, the Caesar cipher composed with itself.

There are now 262 = 676 possible key pairs (k ′′, k ′). One might
hope that double Caesar is more resistant to a brute force attack.

Unfortunately, still only 26 possible distinct encryption functions
and only 26 possible decryptions of each ciphertext.

This is because E 2
(k ′′,k ′) = Ek for k = (k ′ + k ′′) mod 26.

Any attack on the Caesar cipher will work equally well on the
Double Caesar cipher.

To the attacker, there is no difference between the two systems.
Eve neither knows nor cares how Alice actually computed the
ciphertext; all that matters to Eve is probabilistic relationships
between plaintexts and ciphertexts.
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Group property

Let (E , D) be a cryptosystem for which M = C.
Each Ek is then a permutation on M.1

The set of all permutations on M forms a group.2

Definition

(E , D) is said to have the group property if the set of possible
encryption functions E = {Ek | k ∈ K} is closed under functional
composition ◦.

That is, if k ′, k ′′ ∈ K, then there exists k ∈ K such that

Ek = Ek ′′ ◦ Ek ′ .

1A permutation is one-to-one and onto function.
2A group has an associative binary operation with an identity element, and

each element has an inverse.
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Cryptosystems with group property

We’ve seen that the Caesar cipher has the group property.

When E is closed under composition, then (E , ◦) is a subgroup of
all permutations on M. In this case, double encryption adds no
security against a brute force attack.

Even though the key length has doubled, the number of distinct
encryption functions has not increased, and the double encryption
system will fall to a brute force attack on the original cryptosystem.
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Birthday Problem

The birthday problem is to find the probability that two people in a
set of randomly chosen people have the same birthday.

This probability is greater than 50% in any set of at least 23
randomly chosen people.3.

23 is far less than the 253 people that are needed for the
probability to exceed 50% that at least one of them was born on a
specific day, say January 1.

3See Wikipedia, “Birthday problem”.
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Birthday attack on a cryptosystem

A birthday attack is a known plaintext attack on a cryptosystem
that reduces the number of keys that must be tried to roughly the
square root of what a brute force attack needs.

For example, if the original key length was 56 (as is the case with
DES), then only about

√
256 = 228 keys need to be tried.

Any cryptosystem with the group property is subject to a birthday
attack.
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How a birthday attack works

Assume (m, c) is a known plaintext-ciphertext pair, so Ek0(m) = c
for Alice’s secret key k0.

Choose 228 random keys k1 and encrypt m using each.

Choose another 228 random keys k2 and decrypt c using each.

Look for a match (non-empty intersection) between these two
sets.

Suppose one is found for k1 and k2, so Ek1(m) = u = Dk2(c).
It follows that Ek2(Ek1(m)) = c , so we have succeeded in
finding a key pair (k2, k1) that works for the pair (m, c).

There is a key k such that Ek = Ek2 ◦ Ek1 since we are assuming
the group property, so Ek(m) = c .
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How a birthday attack works (cont.)

Alice’s key k0 also has Ek0(m) = c . If it happens that Ek = Ek0 ,
then we have broken the cryptosystem.

We do not need to find k itself since we can compute Ek from Ek1

and Ek2 and Dk from Dk1 and Dk2 .

Assuming reasonable randomness properties, there are unlikely to
be many distinct keys k such that Ek = Ek0 , so with significant
probability we have cracked the system. (For Caesar, there is only
one such k.)

Using additional plaintext-ciphertext pairs, we can increase our
confidence that we have found the correct key pair.
Repeat this process if we have not yet succeeded.

I’ve glossed over many assumptions and details, but that’s the
basic idea.
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Weakenss of the birthday attack

The drawback to the birthday attack (from the attacker’s
perspective) is that it requires a lot of storage in order to find a
matching element.

Nevertheless, if DES were a group, this attack could be carried out
in about a gigabyte of storage, easily within the storage capacity of
modern workstations.

(We will see later that DES is not a group.)
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Data encryption standard (DES)

The Data Encryption Standard is a block cipher that operates on
64-bit blocks and uses a 56-bit key.

It became an official Federal Information Processing Standard
(FIPS) in 1976. It was officially withdrawn as a standard in 2005
after it became widely acknowledged that the key length was too
short and it was subject to brute force attack.

Nevertheless, triple DES (with a 112-bit key) is approved through
the year 2030 for sensitive government information.

The new Advanced Encryption Standard (AES), based on the
Rijndael algorithm, became an official standard in 2001. AES
supports key sizes of 128, 192, and 256 bits and works on 128-bit
blocks.
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