CPSC 467b: Cryptography and Computer Security

Michael J. Fischer

Lecture 5
January 25, 2010

Michael J. Fischer CPSC 467b 1/29

@ DES

@ Using block ciphers

Michael J. Fischer CPSC 467b 2/29

DES

Data encryption standard (DES)

The Data Encryption Standard is a block cipher that operates on
64-bit blocks and uses a 56-bit key.

It became an official Federal Information Processing Standard
(FIPS) in 1976. It was officially withdrawn as a standard in 2005
after it became widely acknowledged that the key length was too
short and it was subject to brute force attack.

Nevertheless, triple DES (with a 112-bit key) is approved through
the year 2030 for sensitive government information.

The new Advanced Encryption Standard (AES), based on the
Rijndael algorithm, became an official standard in 2001. AES
supports key sizes of 128, 192, and 256 bits and works on 128-bit
blocks.

Michael J. Fischer CPSC 467b 3/29

DES

Feistel networks

DES is based on a Feistel network.

This is a general method for building an invertible function from
any function f that scrambles bits.
It consists of some number of stages.
@ Each stage i maps a pair of n-bit words (L;, R;) to a new pair
(Lit1, Ri+1). (n =32 in case of DES.)
o By applying the stages in sequence, a t-stage network maps
(Lo, Ro) to (Lt, Rt).
e (Lo, Ro) is the plaintext, and (L, R;) is the corresponding
ciphertext.

Michael J. Fischer CPSC 467b 4/29

DES

DES Feistel network

F Plaintext

e

w»! J
T

[ciphenext |

Figure 4.4: The DES Algorithm.

Michael J. Fischer CPSC 467b 5/29

One stage

Each stage works as follows:
Lisi=R: (1)

Riy1=L & f(R,K) (2)

Here, K; is a subkey, which is generally derived in some systematic
way from the master key k.

The inversion problem is to find (L;, R;) given (Lj11, Ri+1).
Equation 1 gives us R;. Knowing R; and K;, we can compute
f(Ri, K;). We can then solve equation 2 to get

Li = Riy1 ® f(Ri, Kj)

Michael J. Fischer CPSC 467b 6/29

DES

Properties of Feistel networks

The security of a Feistel-based code lies in the construction of the
function f and in the method for producing the subkeys K.
The invertibility follows just from properties of & (exclusive-or).

DES uses a 16 stage Feistel network.

The pair LgRy is constructed from a 64-bit message by a fixed
initial permutation IP.

The ciphertext output is obtained by applying IP~1 to RigL1s.

The scrambling function f(R;, K;) operates on a 32-bit data block
and a 48-bit key block. Thus, 48 x 16 = 768 key bits are used.

They are all derived in a systematic way from the 56-bit primary
key and are far from independent of each other.

Michael J. Fischer CPSC 467b 7/29

DES

Obtaining the subkey

The scrambling function f(R;, K;) is the heart of DES.

It operates on a 32-bit data block and a 48-bit key block (called a
subkey.

The 56-bit master key k is split into two 28-bit pieces C and D.
At each stage, C and D are rotated by one or two bit positions.
Subkey K is then obtained by applying a fixed permutation
(transposition) to CD.

Michael J. Fischer CPSC 467b 8/29

DES

The scrambling function

At the heart of the scrambling function are eight “S-boxes” that
compute Boolean functions with 6 binary inputs cp, x1, X2, X3, X4, C1
and 4 binary outputs y1, y2, y3, ya.

Thus, each computes some fixed function in {0,1}° — {0,1}*.

Special property of S-boxes: For fixed values of (¢p, c1), the
resulting function on inputs xi,...,xs is a permutation from
{0,1}* — {0, 1}*.

Can regard an S-box as performing a substitution on four-bit
“characters”, where the substitution performed depends both on
the structure of the particular S-box and on the values of its
“control inputs” ¢y and ¢.

The eight S-boxes are all different and are specified by tables.

Michael J. Fischer CPSC 467b 9/29

DES

DES scrambling network

—

s, s, s, S,
¢l el 4vits
-
/
Permutation }

1
[g (R, K;)

Figure 4.5: The DES Function f(R;_y, K;).

Michael J. Fischer CPSC 467b 10/29

DES

Connecting the boxes

The S-boxes together have a total of 48 input lines.

Each of these lines is the output of a corresponding ®-gate.

@ One input of each of these G-gates is connected to a
corresponding bit of the 48-bit subkey Kj. (This is the only
place that the key enters into DES.)

@ The other input of each ®-gate is connected to one of the 32
bits of the first argument of f.

Since there are 48 @-gates and only 32 bits in the first argument
to f, some of those bits get used more than once.

The mapping of input bits to G-gates is called the expansion
permutation E.

Michael J. Fischer CPSC 467b 11/29

DES

Expansion permutation

The expansion permutation connects input bits to @ gates. We
identify the @& gates by the S-box inputs to which they connect.

@ Input bits 32,1,2,3,4,5 connect to the six & gates that go
input wires ¢, x1, X2, X3, X4, ¢ on S-box 1.

e Bits 4,5,6,7,8,9 are connect to the six @& gates that go input
wires g, X1, X2, X3, X4, €1 on S-box 2.

@ The same pattern continues for the remaining S-boxes.

Thus, input bits 1,4,5,8,9,...28,29, 32 are each used twice, and
the remaining input bits are each used once.

Michael J. Fischer CPSC 467b 12/29

DES

Connecting the outputs

The 32 bits of output from the S-boxes are passed through a fixed
permutation P (transposition) that spreads out the output bits.

The outputs of a single S-box at one stage of DES become inputs
to several different S-boxes at the next stage.

This helps provide the desirable “avalanche” effect, where a
change in one input bit spreads out through the network and
causes many output bits to change.

Michael J. Fischer CPSC 467b 13/29

DES

Security considerations

DES is vulnerable to a brute force attack because of its small key
size.

However, it has turned out to be remarkably resistant to
recently-discovered (in the open world) sophisticated attacks.

Differential cryptanalysis: Can break DES using “only” 2*' chosen
ciphertext pairs.

Linear cryptanalysis: Can break DES using 243

pairs.

chosen plaintext

Neither attack is feasible in practice.

Michael J. Fischer CPSC 467b 14/29

Double DES

Double DES is simply double encryption where the base
cryptosystem is DES.

Even if the original system is not a group (and DES is not), double
encryption does not result in a cryptosystem with twice the
effective key length because of another “birthday”-style
known-plaintext attack.

Michael J. Fischer CPSC 467b 15/29

DES

A birthday attack on double DES

Start with a known plaintext-ciphertext pair (m, c).
@ Encrypt m and decrypt ¢ using all possible DES keys.
@ We are guaranteed of finding at least one match, since if
(ki, ko) is the real key pair, then Ey (m) = Dj,(c).
@ A matching pair is good if it defines the same encryption
function as the real key pair. Otherwise it is bad.

@ We expect roughly ~ 248 bad pairs.
@ Try each matching pair on a second plaintext-ciphertext pair.
o Now we expect roughly 2716 bad key pairs, so with high

probability, any of the remaining pairs are good.

257 2112.

o Effective key length is then just 2°/, not hoped-for

(See Trapp & Washington, §4.7, and Katz & Lindell, pp. 182-184.)

Michael J. Fischer CPSC 467b 16/29

DES

A plausibility argument why double DES does not help

Why do we believe the number of bad pairs is so small?

For each key k, Ex maps m and Dy maps c to elements of
M =C. (Recall IM|=[C| =2%)

For a key pair (ki k3) the probability that £, (m) = Dy(c)
would be 2764, assuming Ey;(m) and Dy(c) are uniformly
and independently distributed over M.

There are 212 key pairs, so the expected number of matching
pairs would be 2112 . 2764 — 248

Each matching key pair has probability 27%* of working with a
second plaintext-ciphertext pair (again assuming randomness).

The expected number of key pairs that work for both
plaintext-ciphertext pairs is 248 . 2764 = 216,

Michael J. Fischer CPSC 467b

17/29

DES

DES as a function of the key

We know the randomness assumptions are not quite correct:
@ The pair (m, ¢) was itself not chosen at random.
@ We know little about how E, and D, depend on k.

We do know the expected number of key pairs surviving both
plaintext-ciphertext pairs is at least 1, since the real key pair is
such a pair.

| don’t know how to make this argument completely rigorous, but
it is plausible that it will work to break DES.

This alone is reason enough to seriously doubt the security of
double DES.

Reference: Ralph C. Merkle and Martin E. Hellman, “On the security of
multiple encryption”, Commun. ACM 24, 7 (1981), 465-467.

Michael J. Fischer CPSC 467b 18/29

DES

Extreme example

Here's an extreme example to show why one can't simply assume
the birthday attack will succeed.

Assume a cryptosystem like DES except that the encryption
function is as follows:

Ee(m) = m if k is even
K7\ ~m if kis odd (where ~ means bitwise complement)

Now, when one tries the birthday attack, exactly half of all key
pairs (ki, ko) match.

Repetitions with a new plaintext-ciphertext pair encoded by the
same real key pair do not reduce the number of matches further.

Michael J. Fischer CPSC 467b 19/29

Triple DES

Three key triple DES (3TDES) uses three DES encryptions, i.e.,
Ei;(Exy(Ek, (m))), giving it an actual key length of 168 bits.

3TDES can be broken (in principle) by a known plaintext attack
using about 2% single DES encryptions and 2113 steps.

While this attack is still not practical, the effective security thus
lies in the range between 90 and 113, which is much smaller than
the apparent 168 bits.!

The effective security is the base-2 logarithm of the amount of work to
break a cryptosystem. This is the same as the amount of work to carry out a
brute force attack on a cryptosystem with keys of that length. Thus, a
cryptosystem that can be broken in time 2% is said to have 90-bit effective
security.
Michael J. Fischer CPSC 467b 20/29

DES

Variants of triple DES

Several variants have been proposed.

TDES-EDE uses a decryption in the middle step instead of an
encryption, i.e., Ej,(Dy,(Ek, (m))).
Security is the same as for 3TDES.
One advantage: TDES-EDE encryption and
decryption functions can be used for single DES by
taking k1 = ko = k3 equal to the single DES key.

2TDES uses only two keys k1 and ky. It is the same as

3TDES where k3 = k1. Known plaintext attacks or
chosen plaintext attacks reduce the effective security
to only 80 bits.?

2See Wikipedia for further information on triple DES.
Michael J. Fischer CPSC 467b 21/29

http://en.wikipedia.org/wiki/Triple_DES

Using block ciphers
Block ciphers

Recall: Block ciphers map b-bit plaintext blocks to b-bit ciphertext
blocks.

Block ciphers typically operate on fairly long blocks, e.g., 64-bits
for DES, 128-bits for Rijndael (AES).

Block ciphers can be designed to resist known-plaintext attacks,
provided b is large enough, so they can be pretty secure, even if
the same key is used to encrypt a succession of blocks, as is often
the case.

[What goes wrong if b is small?]

Michael J. Fischer CPSC 467b 22/29

Using block ciphers
Using a block cipher

One rarely wants to send messages of exactly the block length.

To use a block cipher to encrypt arbitrary-length messages:
@ Divide the message into blocks of size b.

@ Pad the last partial block according to a suitable padding rule
and/or add another block at the end.

@ Use the block cipher in some chaining mode to encrypt the
sequence of resulting blocks.

Michael J. Fischer CPSC 467b 23/29

Using block ciphers
Padding

Padding extends the message to satisfy two requirements:
@ The length must be a multiple of b.

@ It must be possible to recover the exact original message from
the padded message.

Just sticking 0's on the end of a message until its length is a
multiple of b will not satisfy the second requirement.

A padding rule must describe about how much padding was added.

Michael J. Fischer CPSC 467b 24/29

Using block ciphers
Padding rules

Here's one rule that works.
@ Let r = |m| mod b. This is the size of the last (partial) block
if |[m| is not a multiple of b.

@ Pad each message with p 0's followed by a length ¢ binary
representation of p.
@ Choose p = (—r — ¢) mod b. The padded message length is
l|m|/b] -b4+r+p+ =0 (mod b).
To unpad, interpret the last ¢ bits of the message as a binary
number p; then discard a total of p + ¢ bits from the right end of
the message.

Michael J. Fischer CPSC 467b 25/29

Using block ciphers
Padding example

Example, b = 64:

@ At most 63 0's ever need to be added, so a 6-bit length field
is sufficient.

@ A message m is then padded to become m’ = m- 0P - p, where
P is the 6-bit binary representation of p.

@ p is chosen so that |m'| = |m| + p + 6 is a multiple of 64.

Michael J. Fischer CPSC 467b 26/29

Using block ciphers

Chaining mode

A chaining mode tells how to encrypt a sequence of plaintext
blocks my, mo, ..., m; to produce a corresponding sequence of
ciphertext blocks c1, ¢, ..., ¢t, and conversely, how to recover the
m;'s given the ¢;'s.

Michael J. Fischer CPSC 467b 27/29

Using block ciphers

Electronic Codebook Mode (ECB)

Each block is encrypted separately.
@ To encrypt, Alice computes ¢; = Ex(m;) for each i.
e To decrypt, Bob computes m; = Di(c;) for each i.

This is in effect a monoalphabetic cipher, where the “alphabet” is
the set of all possible blocks and the permutation is Ej.

Michael J. Fischer CPSC 467b 28/29

Using block ciphers

Cipher Block Chaining Mode (CBC)

Prevents identical plaintext blocks from having identical
ciphertexts.

@ To encrypt, Alice computes the XOR of the current plaintext
block with the previous ciphertext block.
That is, ¢; = Ek(m,- ©® C,',l).

e To decrypt, Bob computes m; = Dy(c;) @ ¢j—1.

To get started, we take cg = IV, where IV is a fixed initialization
vector which we assume is publicly known.

Michael J. Fischer CPSC 467b 29/29

	Outline
	DES
	Using block ciphers

