
Outline Block Stream Steganography Mallory

CPSC 467b: Cryptography and Computer Security
Lecture 6

Michael J. Fischer

Department of Computer Science
Yale University

January 27, 2010

Michael J. Fischer CPSC 467b, Lecture 6 1/36



Outline Block Stream Steganography Mallory

1 Using block ciphers

2 Stream ciphers

3 Steganography

4 Active adversaries

Michael J. Fischer CPSC 467b, Lecture 6 2/36



Outline Block Stream Steganography Mallory

Chaining mode

Recall:
A chaining mode tells how to encrypt a sequence of plaintext
blocks m1,m2, . . . ,mt to produce a corresponding sequence of
ciphertext blocks c1, c2, . . . , ct , and conversely, how to recover the
mi ’s given the ci ’s.

Michael J. Fischer CPSC 467b, Lecture 6 3/36



Outline Block Stream Steganography Mallory

Electronic Codebook Mode (ECB)

Each block is encrypted separately.

To encrypt, Alice computes ci = Ek(mi ) for each i .

To decrypt, Bob computes mi = Dk(ci ) for each i .

This is in effect a monoalphabetic cipher, where the “alphabet” is
the set of all possible blocks and the permutation is Ek .

Michael J. Fischer CPSC 467b, Lecture 6 4/36



Outline Block Stream Steganography Mallory

Cipher Block Chaining Mode (CBC)

Prevents identical plaintext blocks from having identical
ciphertexts.

To encrypt, Alice computes the XOR of the current plaintext
block with the previous ciphertext block.
That is, ci = Ek(mi ⊕ ci−1).

To decrypt, Bob computes mi = Dk(ci )⊕ ci−1.

To get started, we take c0 = IV, where IV is a fixed initialization
vector which we assume is publicly known.

Michael J. Fischer CPSC 467b, Lecture 6 5/36



Outline Block Stream Steganography Mallory

Output Feedback Mode (OFB)

Similar to a one-time pad, but key stream is generated from Ek .

To encrypt, Alice repeatedly applies the encryption function to
an initial vector (IV) to produce a stream of block keys, which
in turn are XORed with successive plaintext blocks.
That is, ci = mi ⊕ ki , where ki = Ek(ki−1) is a block key, and
k0 is a fixed initialization vector IV.

To decrypt, Bob applies exactly the same method to the
ciphertext to get the plaintext.
That is, mi = ci ⊕ ki , where ki = Ek(ki−1) and k0 = IV .

Michael J. Fischer CPSC 467b, Lecture 6 6/36



Outline Block Stream Steganography Mallory

Cipher-Feedback Mode (CFB)

Similar to OFB, but key stream depends on previous messages as
well as on Ek .

To encrypt, Alice computes the XOR of the current plaintext
block with the encryption of the previous ciphertext block.
That is, ci = mi ⊕ Ek(ci−1).
Again, c0 is a fixed initialization vector.

To decrypt, Bob computes mi = ci ⊕ Ek(ci−1).

Note that Bob is able to decrypt without using the block
decryption function Dk . In fact, it is not even necessary for Ek to
be a one-to-one function (but using a non one-to-one function
might weaken security).

Michael J. Fischer CPSC 467b, Lecture 6 7/36



Outline Block Stream Steganography Mallory

OFB, CFB, and stream ciphers

Both CFB and OFB are closely related to stream ciphers.
In both cases, ci is mi XORed with some function of data that
came before stage i .

Like a one-time pad, OFB is insecure if the same key is ever
reused, for the sequence of ki ’s generated will be the same.
If m and m′ are encrypted using the same key k , then
m ⊕m′ = c ⊕ c ′.

CFB avoids this problem, for even if the same key k is used for two
different message sequences mi and m′i , it is only true that
mi ⊕m′i = ci ⊕ c ′i ⊕ Ek(ci−1)⊕ Ek(c ′i−1), and the dependency on k
does not drop out.

Michael J. Fischer CPSC 467b, Lecture 6 8/36



Outline Block Stream Steganography Mallory

Propagating Cipher-Block Chaining Mode (PCBC)

Here is a more complicated chaining rule that nonetheless can be
deciphered.

To encrypt, Alice XORs the current plaintext block, previous
plaintext block, and previous ciphertext block.
That is, ci = Ek(mi ⊕mi−1 ⊕ ci−1). Here, both m0 and c0 are
fixed initialization vectors.

To decrypt, Bob computes mi = Dk(ci )⊕mi−1 ⊕ ci−1.

Michael J. Fischer CPSC 467b, Lecture 6 9/36



Outline Block Stream Steganography Mallory

Recovery from data corruption

In real applications, a ciphertext block might be damaged or lost.
An important property is how much plaintext is lost as a result.

With ECB and OFB, if Bob receives a bad block ci , then he
cannot recover the corresponding mi , but all good ciphertext
blocks can be decrypted.

With CBC and CFB, Bob needs both good ci and ci−1 blocks in
order to decrypt mi . Therefore, a bad block ci renders both mi

and mi+1 unreadable.

With PCBC, a bad block ci renders mj unreadable for all j ≥ i .

Michael J. Fischer CPSC 467b, Lecture 6 10/36



Outline Block Stream Steganography Mallory

Other modes

Other modes can easily be invented.

In all cases, ci is computed by some expression (which may depend
on i) built from Ek() and ⊕ applied to available information:

ciphertext blocks c1, . . . , ci−1,

message blocks m1, . . . ,mi ,

any initialization vectors.

Any such equation that can be “solved” for mi (by possibly using
Dk() to invert Ek()) is a suitable chaining mode in the sense that
Alice can produce the ciphertext and Bob can decrypt it.

Of course, the resulting security properties depend heavily on the
particular expression chosen.

Michael J. Fischer CPSC 467b, Lecture 6 11/36



Outline Block Stream Steganography Mallory

Symmetric cryptosystem families

Symmetric (one-key) cryptosystems fall into two broad classes,
block ciphers and stream ciphers.

A block cipher encrypts large blocks of data at a time.

A stream cipher process a stream of characters in an on-line
fashion, emitting the ciphertext character by character as it
goes.

Michael J. Fischer CPSC 467b, Lecture 6 12/36



Outline Block Stream Steganography Mallory

Structure of stream cipher

A stream cipher has two components:

1 a cipher that is used to encrypt a given character;

2 a key stream generator that produces a different key to be
used for each successive letter.

A commonly-used cipher is the simple XOR cryptosystem, also
used in the one-time pad.

Rather than using a long random string for the key stream, we
instead generate the key stream on the fly using a state machine.

Michael J. Fischer CPSC 467b, Lecture 6 13/36



Outline Block Stream Steganography Mallory

Key stream generator

A key stream generator consists of three parts:

1 an internal state,

2 a next-state generator,

3 an output function.

At each stage, the state is updated and the output function is
applied to the state to obtain the next component of the key
stream.

The next-state generator and output functions can both depend on
the (original) master key.

Like a one-time pad, a different master key must be used for each
message; otherwise the system is easily broken.

Michael J. Fischer CPSC 467b, Lecture 6 14/36



Outline Block Stream Steganography Mallory

Security requirements for key stream generator

The output of the key stream generator must “look” random.

Any regularities in the output give an attacker information about
the plaintext.

A known plaintext-ciphertext pair (m, c) gives the attacker a
sample output sequence from the key stream generator (namely,
m ⊕ c .)

If the attacker is able to figure out the internal state, then she will
be able to predict all future outputs of the generator and decipher
the remainder of the ciphertext.

A pseudorandom sequence generator that resists all feasible
attempts to predict future outputs given a sequence of past
outputs is said to be cryptographically strong.

Michael J. Fischer CPSC 467b, Lecture 6 15/36



Outline Block Stream Steganography Mallory

Cryptographically strong pseudorandom sequence
generators

Commonly-used linear congruential pseudorandom number
generators typically found in software libraries are quite insecure.

After observing a relatively short sequence of outputs, one can
solve for the state and correctly predict all future outputs.

(Note that the Linux random() is non-linear and hence much better,
though still not cryptographically strong.

We will return to pseudorandom number generation later in this course.

See Katz & Lindell Chapter 3 for an in-depth discussion of this topic.)

Michael J. Fischer CPSC 467b, Lecture 6 16/36



Outline Block Stream Steganography Mallory

Ideas for improving stream ciphers

As with one-time pads, the same key stream must not be used
more than once.

A possible improvement: Make the next state depend on the
current plaintext or ciphertext characters.

Then the generated key streams will diverge on different messages,
even if the key is the same.

Serious drawback: One bad ciphertext character will render the
rest of the message undecipherable.

Michael J. Fischer CPSC 467b, Lecture 6 17/36



Outline Block Stream Steganography Mallory

Building key stream generators from block ciphers

OFB and CFB block chaining modes can be extended to stream
ciphers on units smaller than full blocks.

Can’t just apply directly because one can’t wait for a block’s worth
of message bytes before outputting the first ciphertext byte.

The idea: Use a shift register X to accumulate the feedback bits
from previous stages of encryption so that the full-sized blocks
needed by the block chaining method are available.

X is initialized to some public initialization vector.

Michael J. Fischer CPSC 467b, Lecture 6 18/36



Outline Block Stream Steganography Mallory

Some notation

Assume block size b = 64 bits and character size s = 8 bits.

Let B = {0, 1}. Define two operations: Lm and Rm : Bb → Bm.

Lm(x) are the leftmost m bits of x , and Rm(x) are the rightmost
m bits of x .

Michael J. Fischer CPSC 467b, Lecture 6 19/36



Outline Block Stream Steganography Mallory

Extended CFB and OFB similarities

The extended versions of CFB and OFB are very similar.

Both maintain a b-bit shift register X .

The shift register value Xi at stage i depends only on c1, . . . , ci−1

and the master key k.

At stage i , Alice

computes Xi according to CFB or OFB rules;

computes byte key ki = Ls(Ek(Xi ));

encrypts message byte mi as ci = mi ⊕ ki .

Bob decrypts similarly.

Michael J. Fischer CPSC 467b, Lecture 6 20/36



Outline Block Stream Steganography Mallory

Shift register rules

The two modes differ in how they update the shift register.

Extended CFB mode
Xi = Rb−s(Xi−1) · ci−1

Extended OFB mode
Xi = Rb−s(Xi−1) · ki−1

(‘·’ denotes concatenation.)

Conclusion:

CFB keeps the most recent b/s ciphertext bytes in X ,

OFB keeps the most recent b/s key bytes in X .

Michael J. Fischer CPSC 467b, Lecture 6 21/36



Outline Block Stream Steganography Mallory

Comparison of extended CFB and OFB modes

The differences seem minor, but they have profound implications
on the resulting cryptosystem.

In CFB mode, loss of ciphertext byte ci causes mi and all
succeeding message bytes to become undecipherable until ci is
shifted off the end of X . Thus, db/se message bytes are lost.

In OFB mode, Xi depends only on i and the master key k
(and the initialization vector IV), so loss of a ciphertext byte
causes loss of only the corresponding plaintext byte.

Michael J. Fischer CPSC 467b, Lecture 6 22/36



Outline Block Stream Steganography Mallory

Downside of extended OFB

The downside of OFB is that security is lost of the same master
key is used twice for different messages. CFB does not suffer from
this problem since different messages lead to different ciphertexts
and hence different key streams.

Nevertheless, CFB has the undesirable property that the key
streams are the same up to and including the first byte in which
the two message streams differ.

This enables Eve to determine the length of the common prefix of
the two message streams and also to determine the XOR of the
first bytes at which they differ.

Possible solution to both problems: Use a different initialization
vector for each message. Prefix the ciphertext with the
(unencrypted) IV so Bob can still decrypt.

Michael J. Fischer CPSC 467b, Lecture 6 23/36



Outline Block Stream Steganography Mallory

Rotor machines

Rotor machines are mechanical
devices for implementing stream
ciphers.

They played an important role
during the Second World War.

The Germans believed their
Enigma machine was unbreakable.

The Allies, with great effort,
succeeded in breaking it and in
reading many of the top-secret
military communications.

This is said to have changed the
course of the war.

Image from Wikipedia

Michael J. Fischer CPSC 467b, Lecture 6 24/36



Outline Block Stream Steganography Mallory

How a rotor machine works

High-level structure:

Uses electrical switches to create a permutation of 26 input
wires to 26 output wires.

Each input wire is attached to a key on a keyboard.

Each output wire is attached to a lamp.

The keys are associated with letters just like on a computer
keyboard.

Each lamp is also labeled by a letter from the alphabet.

Pressing a key on the keyboard causes a lamps to light,
indicating the corresponding ciphertext character.

The operator types the message one character at a time and writes
down the letter corresponding to the illuminated lamp.

The same process works for decryption since Eki
= Dki

.

Michael J. Fischer CPSC 467b, Lecture 6 25/36



Outline Block Stream Steganography Mallory

Key stream generation

The encryption permutation.

Each rotor is individually wired to produce some
random-looking fixed permutation π.

Several rotors stacked together produce the composition of
the permutations implemented by the individual rotors.

In addition, the rotors can rotate relative to each other,
implementing in effect a rotation permutation (like the Caeser
cipher uses).

Michael J. Fischer CPSC 467b, Lecture 6 26/36



Outline Block Stream Steganography Mallory

Key stream generation (cont.)

Let ρk(x) = x + k mod 26. Then rotor in position k implements
permutation ρkπρ

−1
k .

Several rotors stacked together implement the composition of the
permutations computed by each.

For example, three rotors implementing permutations π1, π2, and
π3, placed in positions r1, r2, and r3, respectively, would produce
the permutation

ρr1 · π1 · ρ−r1 · ρr2 · π2 · ρ−r2 · ρr3 · π3 · ρ−r3

= ρr1 · π1 · ρr2−r1 · π2 · ρr3−r2 · π3 · ρ−r3 (1)

Michael J. Fischer CPSC 467b, Lecture 6 27/36



Outline Block Stream Steganography Mallory

Changing the permutation

After each letter is typed, some of the rotors change position,
much like the mechanical odometer used in older cars.

The period before the rotor positions repeat is quite long, allowing
long messages to be sent without repeating the same permutation.

Thus, a rotor machine is much like a polyalphabetic substitution
cipher but with a very long period.

Unlike a pure polyalphabetic cipher, the successive permutations
until the cycle repeats are not independent of each other but are
related by equation (1).

This gives the first toehold into methods for breaking the cipher
(which are far beyond the scope of this course).

Michael J. Fischer CPSC 467b, Lecture 6 28/36



Outline Block Stream Steganography Mallory

History

Several different kinds of rotor machines were built and used, both
by the Germans and by others, some of which work somewhat
differently from what I described above.

However, the basic principles are the same.

The interested reader can find much detailed material on the web
by searching for “enigma cipher machine” and “rotor cipher
machine”. Nice descriptions may be found at
http://en.wikipedia.org/wiki/Enigma_machine and
http://www.quadibloc.com/crypto/intro.htm.

Michael J. Fischer CPSC 467b, Lecture 6 29/36

http://en.wikipedia.org/wiki/Enigma_machine
http://www.quadibloc.com/crypto/intro.htm


Outline Block Stream Steganography Mallory

Steganography

Steganography, hiding one message inside another, is an old
technique that is still in use.

For example, a message can be hidden inside a graphics image file
by using the low-order bit of each pixel to encode the message.
The visual effect of these tiny changes is probably too small to be
noticed by the user.

The message can be hidden further by compressing it or by
encrypting it with a conventional cryptosystem.

Unlike conventional cryptosystems, steganography relies on the
secrecy of the method of hiding for its security.

If Eve does not even recognize the message as ciphertext, then she
is not likely to attempt to decrypt it.

Michael J. Fischer CPSC 467b, Lecture 6 30/36



Outline Block Stream Steganography Mallory

Active adversary

Recall from lecture 3 the active adversary “Mallory” who has the
power to modify messages and generate his own messages as well
as eavesdrop.

Alice sends c = Ek(m), but Bob may receive a corrupted or forged
c ′ 6= c .

How does Bob know that the message he receives really was sent
by Alice?

The naive answer is that Bob computes m′ = Dk(c ′), and if m′

“looks like” a valid message, then Bob accepts it as having come
from Alice. The reasoning here is that Mallory, not knowing k ,
could not possibly have produced a valid-looking message. For any
particular cipher such as DES, that assumption may or may not be
valid.

Michael J. Fischer CPSC 467b, Lecture 6 31/36



Outline Block Stream Steganography Mallory

Some active attacks

Three successively weaker (and therefore easier) active attacks in
which Mallory might produce fraudulent messages:

1 Produce valid c ′ = Ek(m′) for a message m′ of his choosing.

2 Produce valid c ′ = Ek(m′) for a message m′ that he cannot
choose and perhaps does not even know.

3 Alter a valid c = Ek(m) to produce a new valid c ′ that
corresponds to an altered message m′ of the true message m.

Attack (1) requires computing c = Ek(m) without knowing k .

This is similar to Eve’s ciphertext-only passive attack where she
tries to compute m = Dk(c) without knowing k .

It’s conceivable that one attack is possible but not the other.

Michael J. Fischer CPSC 467b, Lecture 6 32/36



Outline Block Stream Steganography Mallory

Replay attacks

One form of attack (2) clearly is possible.

In a replay attack, Mallory substitutes a legitimate old encrypted
message c ′ for the current message c .

It can be thwarted by adding timestamps and/or sequence
numbers to the messages so that Bob can recognize when old
messages are being received.

Of course, this only works if Alice and Bob anticipate the attack
and incorporate appropriate countermeasures into their protocol.

Michael J. Fischer CPSC 467b, Lecture 6 33/36



Outline Block Stream Steganography Mallory

Fake encrypted messages

Even if replay attacks are ruled out, a cryptosystem that is secure
against attack (1) might still permit attack (2).

There are all sorts of ways that Mallory can generate values c ′.

What gives us confidence that Bob won’t accept one of them as
being valid?

Michael J. Fischer CPSC 467b, Lecture 6 34/36



Outline Block Stream Steganography Mallory

Message-altering attacks

Attack (3) might be possible even when (1) and (2) are not.

For example, if c1 and c2 are encryptions of valid messages,
perhaps so is c1 ⊕ c2.

This depends entirely on particular properties of Ek unrelated to
the difficulty of decrypting a given ciphertext.

We will see some cryptosystems later that do have the property of
being vulnerable to attack (3). In some contexts, this ability to do
meaning computations on ciphertexts can actually be useful, as we
shall see.

Michael J. Fischer CPSC 467b, Lecture 6 35/36



Outline Block Stream Steganography Mallory

Encrypting random-looking strings

Cryptosystems are not always used to send natural language or
other highly-redundant messages.

For example, suppose Alice wants to send Bob her password to a
web site. Knowing full well the dangers of sending passwords in the
clear over the internet, she chooses to encrypt it instead. Since
passwords are supposed to look like random strings of characters,
Bob will likely accept anything he gets from Alice.

He could be quite embarrassed (or worse) claiming he knew Alice’s
password when in fact the password he thought was from Alice was
actually a fraudulent one derived from a random ciphertext c ′

produced by Mallory.

Michael J. Fischer CPSC 467b, Lecture 6 36/36


	Outline
	Using block ciphers
	Stream ciphers
	Steganography
	Active adversaries

