
Outline RSA Bignums Exp Zn

CPSC 467b: Cryptography and Computer Security
Lecture 8

Michael J. Fischer

Department of Computer Science
Yale University

February 3, 2010

Michael J. Fischer CPSC 467b, Lecture 8 1/27

Outline RSA Bignums Exp Zn

1 RSA (continued)

2 Computing with big numbers

3 Fast exponentiation algorithms

4 Number theory
Division
Modular Arithmetic

Michael J. Fischer CPSC 467b, Lecture 8 2/27

Outline RSA Bignums Exp Zn

RSA review

Key generation

Here’s how Bob generates an RSA key pair.

Bob chooses two sufficiently large distinct prime numbers p
and q and computes n = pq.
For security, p and q should be about the same length (when
written in binary).

He computes two numbers e and d with a certain
number-theoretic relationship.

The public key is the pair ke = (e, n). The private key is the
pair kd = (d , n). The primes p and q are no longer needed
and should be discarded.

Michael J. Fischer CPSC 467b, Lecture 8 3/27

Outline RSA Bignums Exp Zn

RSA review

Encryption and decryption

To encrypt, Alice computes c = me mod n.

To decrypt, Bob computes m = cd mod n.

This works because m = (me mod n)d mod n for all m.

Questions

How does one find n, e, d?

Why is RSA believed to be secure?

How can one implement RSA when most computers only
support arithmetic on 32-bit or 64-bit integers?

How can one possibly compute me mod n for 1024 bit
numbers?

Michael J. Fischer CPSC 467b, Lecture 8 4/27

Outline RSA Bignums Exp Zn

Tools needed to answer RSA questions

Two kinds of tools are needed to understand and implement RSA.

Algorithms: Need clever algorithms for primality testing, fast
exponentiation, and modular inverse computation.

Number theory: Need some theory of Zn, the integers modulo n,
and some special properties of numbers n that are
the product of two primes.

Michael J. Fischer CPSC 467b, Lecture 8 5/27

Outline RSA Bignums Exp Zn

Factoring assumption

The security of RSA is based on the premise that the factoring
problem on large integers is infeasible, even when the integers are
known to be the product of just two distinct primes.

The factoring problem is to find a prime divisor of a composite
number n.

No feasible algorithm for solving the factoring problem is known,
even in the special case of an RSA modulus n.

Michael J. Fischer CPSC 467b, Lecture 8 6/27

Outline RSA Bignums Exp Zn

How big is big enough?

The security of RSA depends on n, p, q being sufficiently large.

What is sufficiently large? That’s hard to say, but n is typically
chosen to be at least 1024 bits long, or for better security, 2048
bits long.

The primes p and q whose product is n are generally chosen be
roughly the same length, so each will be about half as long as n.

Michael J. Fischer CPSC 467b, Lecture 8 7/27

Outline RSA Bignums Exp Zn

Algorithms for arithmetic on big numbers

The arithmetic built into typical computers can handle only 32-bit
or 64-bit integers. Hence, all arithmetic on large integers must be
performed by software routines.

The straightforward algorithms for addition and multiplication have
time complexities O(N) and O(N2), respectively, where N is the
length (in bits) of the integers involved.

Asymptotically faster multiplication algorithms are known, but they
involve large constant factor overheads. It’s not clear whether they
are practical for numbers of the sizes we are talking about.

Michael J. Fischer CPSC 467b, Lecture 8 8/27

Outline RSA Bignums Exp Zn

Big number libraries

A lot of cleverness is possible in the careful implementation of even
the O(N2) multiplication algorithms, and a good implementation
can be many times faster in practice than a poor one. They are
also hard to get right because of many special cases that must be
handled correctly!

Most people choose to use big number libraries written by others
rather than write their own code.

Two such libraries that you can use in this course:

1 GMP (GNU Multiple Precision Arithmetic Library);

2 The big number routines in the openssl crypto library.

Michael J. Fischer CPSC 467b, Lecture 8 9/27

Outline RSA Bignums Exp Zn

GMP

GMP provides a large number of highly-optimized function calls for
use with C and C++.

It is preinstalled on all of the Zoo nodes and supported by the open
source community. Type info gmp at a shell for documentation.

Michael J. Fischer CPSC 467b, Lecture 8 10/27

Outline RSA Bignums Exp Zn

Openssl crypto package

OpenSSL is a cryptography toolkit implementing the Secure
Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1)
network protocols and related cryptography standards required by
them.

It is widely used and pretty well debugged. The protocol requires
cryptography, and OpenSSL implements its own big number
routines which are contained in its crypo library.

Type man crypto for general information about the library, and
man bn for the specifics of the big number routines.

Michael J. Fischer CPSC 467b, Lecture 8 11/27

Outline RSA Bignums Exp Zn

Modular exponentiation

The basic operation of RSA is modular exponentiation of big
numbers, i.e., computing me mod n for big numbers m, e, and n.

The obvious way to compute this would be to compute first
t = me and then t mod n.

Michael J. Fischer CPSC 467b, Lecture 8 12/27

Outline RSA Bignums Exp Zn

Difficulty of modular exponentiation

1 The number me is too big to store! This number, when
written in binary, is about 1024 ∗ 21024 bits long, a number far
larger than the number of atoms in the universe (which is
estimated to be only around 1080 ≈ 2266).

2 The simple iterative loop to compute me requires e
multiplications, or about 21024 operations in all. This
computation would run longer than the current age of the
universe (which is estimated to be 15 billion years).

Assuming one loop iteration could be done in one
microsecond (very optimistic seeing as each iteration requires
computing a product and remainder of big numbers), only
about 30× 1012 iterations could be performed per year, and
only about 450× 1021 iterations in the lifetime of the
universe. But 450× 1021 ≈ 279, far less than e − 1.

Michael J. Fischer CPSC 467b, Lecture 8 13/27

Outline RSA Bignums Exp Zn

Controlling the size of intermediate results

The trick to get around the first problem is to do all arithmetic
modulo n, that is, reduce the result modulo n after each arithmetic
operation.

The product of two length ` numbers is only length 2` before
reduction mod n, so in this way, one never has to deal with
numbers longer than about 2048 bits.

Question to think about: Why is it correct to do this?

Michael J. Fischer CPSC 467b, Lecture 8 14/27

Outline RSA Bignums Exp Zn

Efficient exponentiation

The trick here is to use a more efficient exponentiation algorithm
based on repeated squaring. To compute me mod n where e = 2k ,
one computes

m0 = m
m1 = (m0 ∗m0) mod n
m2 = (m1 ∗m1) mod n

...
mk = (mk−1 ∗mk−1) mod n.

Clearly, mi = m2i
mod n for all i .

For values of e that are not powers of 2, me can be obtained as
the product modulo n of certain mi ’s.

Express e in binary as e = (bsbs−1 . . . b2b1b0)2 and include mi in
the final product if and only if bi = 1.

Michael J. Fischer CPSC 467b, Lecture 8 15/27

Outline RSA Bignums Exp Zn

Towards greater efficiency

It is not necessary to perform this computation in two phases.

Rather, the two phases can be combined together, resulting in
slicker and simpler algorithms that do not require the explicit
storage of the mi ’s.

We give both a recursive and an iterative version.

Michael J. Fischer CPSC 467b, Lecture 8 16/27

Outline RSA Bignums Exp Zn

A recursive exponentiation algorithm

Here is a recursive version written in C notation, but it should be
understood that the C programs only work for numbers smaller
than 216. To handle larger numbers requires the use of big number
functions.

/* computes m^e mod n recursively */
int modexp(int m, int e, int n) {
int r;
if (e == 0) return 1; /* m^0 = 1 */
r = modexp(m*m % n, e/2, n); /* r = (m^2)^(e/2) mod n */
if ((e&1) == 1) r = r*m % n; /* handle case of odd e */
return r;

}

Michael J. Fischer CPSC 467b, Lecture 8 17/27

Outline RSA Bignums Exp Zn

An iterative exponentiation algorithm

This same idea can be expressed iteratively to achieve even greater
efficiency.

/* computes m^e mod n iteratively */
int modexp(int m, int e, int n) {
int r = 1;
while (e > 0) {
if ((e&1) == 1) r = r*m % n;
e /= 2;
m = m*m % n;

}
return r;

}

Michael J. Fischer CPSC 467b, Lecture 8 18/27

Outline RSA Bignums Exp Zn

Correctness

The loop invariant is

e > 0 ∧ (me0
0 mod n = rme mod n) (1)

where m0 and e0 are the initial values of m and e, respectively.

Proof of correctness:

It is easily checked that (1) holds at the start of each iteration.

If the loop exits, then e = 0, so r mod n is the desired result.

Termination is ensured since e gets reduced during each
iteration.

Michael J. Fischer CPSC 467b, Lecture 8 19/27

Outline RSA Bignums Exp Zn

A minor optimization

Note that the last iteration of the loop computes a new value of m
that is never used. A slight efficiency improvement results from
restructuring the code to eliminate this unnecessary computation.
Following is one way of doing so.

/* computes m^e mod n iteratively */
int modexp(int m, int e, int n) {
int r = ((e&1) == 1) ? m % n : 1;
e /= 2;
while (e > 0) {
m = m*m % n;
if ((e&1) == 1) r = r*m % n;
e /= 2;

}
return r;

}

Michael J. Fischer CPSC 467b, Lecture 8 20/27

Outline RSA Bignums Exp Zn Division Modular Arithmetic

Number theory overview

In this and following sections, we review some number theory that
is needed for understanding RSA.

I will provide only a high-level overview. Further details are
contained in course handouts and the textbooks.

Michael J. Fischer CPSC 467b, Lecture 8 21/27

Outline RSA Bignums Exp Zn Division Modular Arithmetic

Quotient and remainder

Theorem (division theorem)

Let a, b be integers and assume b > 0. There are unique integers q
(the quotient) and r (the remainder) such that a = bq + r and
0 ≤ r < b.

We denote the quotient by a÷ b and the remainder by a mod b. It
follows that

a = b × (a÷ b) + (a mod b)

or equivalently,
a mod b = a− b × (a÷ b).

The latter actually defines mod in terms of ÷.
÷ in turn can be defined as a÷ b = ba/bc.1

1Here, / is ordinary real division and bxc, the floor of x , is the greatest
integer ≤ x . In C, / is used for both ÷ and / depending on its operand types.

Michael J. Fischer CPSC 467b, Lecture 8 22/27

Outline RSA Bignums Exp Zn Division Modular Arithmetic

mod for negative numbers

When either a or b is negative, there is no consensus on the
definition of a mod b.

By our definition, a mod b is always in the range [0 . . . b − 1], even
when a is negative.

Example,

(−5) mod 3 = (−5)− 3× ((−5)÷ 3) = −5− 3× (−2) = 1.

In the C programming language, the mod operator % is defined
differently, so (a % b) 6= (a mod b) when a is negative and b is
positive.2

2For those of you who are interested, the C standard defines a % b to be the
number satisfying the equation (a/b) ∗ b + (a % b) = a. C also defines a/b to
be the result of rounding the real number a/b towards zero, so −5/3 = −1.
Hence, −5 % 3 = −5− (−5/3) ∗ 3 = −5 + 3 = −2 in C.

Michael J. Fischer CPSC 467b, Lecture 8 23/27

Outline RSA Bignums Exp Zn Division Modular Arithmetic

Divides

We say that b divides a (exactly) and write b |a in case
a mod b = 0.

Fact

If d |(a + b), then either d divides both a and b, or d divides
neither of them.

To see this, suppose d |(a + b) and d |a. Then by the division
theorem, a + b = dq1 and a = dq2 for some integers q1 and q2.
Substituting for a and solving for b, we get

b = dq1 − dq2 = d(q1 − q2).

But this implies d |b, again by the division theorem.

Michael J. Fischer CPSC 467b, Lecture 8 24/27

Outline RSA Bignums Exp Zn Division Modular Arithmetic

The mod relation

We just saw that mod is a binary operation on integers.

Mod is also used to denote a relationship on integers:

a ≡ b (mod n) iff n |(a− b).

That is, a and b have the same remainder when divided by n. An
immediate consequence of this definition is that

a ≡ b (mod n) iff (a mod n) = (b mod n).

Thus, the two notions of mod aren’t so different after all!

We sometimes write a ≡n b to mean a ≡ b (mod n).

Michael J. Fischer CPSC 467b, Lecture 8 25/27

Outline RSA Bignums Exp Zn Division Modular Arithmetic

Mod is an equivalence relation

The two-place relationship ≡n is an equivalence relation.

Its equivalence classes are called residue classes modulo n and are
denoted by [b]≡n = {a | a ≡ b (mod n)} or simply by [b].

For example, if n = 7, then [10] = {. . .− 11,−4, 3, 10, 17, . . .}.

Fact

[a] = [b] iff a ≡ b (mod n).

Michael J. Fischer CPSC 467b, Lecture 8 26/27

Outline RSA Bignums Exp Zn Division Modular Arithmetic

Canonical names

If x ∈ [b], then x is said to be a representative or name of the
equivalence class [b]. Obviously, b is a representative of [b].
Thus, [−11], [−4], [3], [10], [17] are all names for the same
equivalence class.

The canonical or preferred name for the class [b] is the unique
integer in [b] ∩ {0, 1, . . . , n − 1}.

Thus, the canonical name for [10] is 10 mod 7 = 3.

Michael J. Fischer CPSC 467b, Lecture 8 27/27

	Outline
	RSA (continued)
	Computing with big numbers
	Fast exponentiation algorithms
	Number theory
	Division
	Modular Arithmetic

