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The mod relation

We just saw that mod is a binary operation on integers.

Mod is also used to denote a relationship on integers:

a ≡ b (mod n) iff n |(a− b).

That is, a and b have the same remainder when divided by n. An
immediate consequence of this definition is that

a ≡ b (mod n) iff (a mod n) = (b mod n).

Thus, the two notions of mod aren’t so different after all!

We sometimes write a ≡n b to mean a ≡ b (mod n).
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Mod is an equivalence relation

The two-place relationship ≡n is an equivalence relation.

Its equivalence classes are called residue classes modulo n and are
denoted by [b]≡n = {a | a ≡ b (mod n)} or simply by [b].

For example, if n = 7, then [10] = {. . .− 11,−4, 3, 10, 17, . . .}.

Fact

[a] = [b] iff a ≡ b (mod n).
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Canonical names

If x ∈ [b], then x is said to be a representative or name of the
equivalence class [b]. Obviously, b is a representative of [b].
Thus, [−11], [−4], [3], [10], [17] are all names for the same
equivalence class.

The canonical or preferred name for the class [b] is the unique
integer in [b] ∩ {0, 1, . . . , n − 1}.

Thus, the canonical name for [10] is 10 mod 7 = 3.
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Mod is a congruence relation

The relation ≡n is a congruence relation with respect to addition,
subtraction, and multiplication of integers.

Fact

For each arithmetic operation � ∈ {+,−,×}, if a ≡ a′ (mod n)
and b ≡ b′ (mod n), then

a� b ≡ a′ � b′ (mod n).

The class containing the result of a� b depends only on the
classes to which a and b belong and not the particular
representatives chosen.

Hence, we can perform arithmetic on equivalence classes by
operating on their names.
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Ring of integers mod n

Let Z denote the set of all integers, positive and negative. Let
Zn ⊆ Z contain the non-negative integers less than n, that is,

Zn = {0, 1, . . . , n − 1}.

We now define addition, subtraction, and multiplication operations
directly on Zn:

a⊕ b = (a + b) mod n
a	 b = (a− b) mod n
a⊗ b = (a× b) mod n

(1)

We will sometimes write +,−,× in place of ⊕,	,⊗, respectively,
when it is clear from context that they are to be regarded as
operations over Zn rather than over Z.
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Greatest common divisor

Definition

The greatest common divisor of two integers a and b, written
gcd(a, b), is the largest integer d such that d |a and d |b.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of
every integer, and the divisor of a non-zero number cannot be
larger (in absolute value) than the number itself.

Question: Why isn’t gcd(0, 0) well defined?
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Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form.

Namely, let pi be the i th prime. Write a =
∏

pei
i and b =

∏
p fi
i .

Then
gcd(a, b) =

∏
p

min(ei ,fi )
i .

Example: 168 = 23 · 3 · 7 and 450 = 2 · 32 · 52, so
gcd(168, 450) = 2 · 3 = 6.

However, factoring is believed to be a hard problem, and no
polynomial-time factorization algorithm is currently known. (If it
were easy, then Eve could use it to break RSA, and RSA would be
of no interest as a cryptosystem.)
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Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the
need to factor a and b using the famous Euclidean algorithm.

Euclid’s algorithm is remarkable, not only because it was
discovered a very long time ago, but also because it works without
knowing the factorization of a and b.
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Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the
gcd function. In the following, assume a > 0 and a ≥ b ≥ 0:

gcd(a, b) = gcd(b, a) (2)

gcd(a, 0) = a (3)

gcd(a, b) = gcd(a− b, b) (4)

Identity 2 is obvious from the definition of gcd. Identity 3 follows
from the fact that every positive integer divides 0. Identity 4
follows from the basic fact relating divides and addition from
lecture 8.
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Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b)
to be reduced to the problem of computing gcd(a− b, b).

The new problem is “smaller” as long as b > 0.

The size of the problem gcd(a, b) is a + b, the sum of the two
arguments. This leads to an easy recursive algorithm.

int gcd(int a, int b)
{
if ( a < b ) return gcd(b, a);
else if ( b == 0 ) return a;
else return gcd(a-b, b);

}

Nevertheless, this algorithm is not very efficient, as you will quickly
discover if you attempt to use it, say, to compute gcd(1000000, 2).
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Repeated subtraction

Repeatedly applying identity (4) to the pair (a, b) until it can’t be
applied any more produces the sequence of pairs

(a, b), (a− b, b), (a− 2b, b), . . . , (a− qb, b).

The sequence stops when a− qb < b.

How many times you can subtract b from a while remaining
non-negative?
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Using division in place of repeated subtractions

The number of times is the quotient ba/bc.

The amout a− qb that is left after q subtractions is just the
remainder a mod b.

Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b), giving the identity

gcd(a, b) = gcd(a mod b, b). (5)
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Full Euclidean algorithm

Recall the inefficient GCD algorithm.

int gcd(int a, int b) {
if ( a < b ) return gcd(b, a);
else if ( b == 0 ) return a;
else return gcd(a-b, b);

}

The following algorithm is exponentially faster.

int gcd(int a, int b) {
if ( b == 0 ) return a;
else return gcd(b, a%b);

}

Principal change: Replace gcd(a-b,b) with gcd(b, a%b).
Besides collapsing repeated subtractions, we have a ≥ b for all but
the top-level call on gcd(a, b). This eliminates roughly half of the
remaining recursive calls.
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Complexity of GCD

The new algorithm requires at most in O(n) stages, where n is the
sum of the lengths of a and b when written in binary notation, and
each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

int gcd(int a, int b) {
int aa;
while (b > 0) {
aa = a;
a = b;
b = aa % b;

}
return a;

}
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Relatively prime numbers

Two integers a and b are relatively prime if they have no common
prime factors, or equivalently, if gcd(a, b) = 1. Let Z∗n ⊆ Zn

contain those integers that are relatively prime to n, so

Z∗n = {a ∈ Zn | gcd(a, n) = 1}.
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Euler’s totient function φ(n)

φ(n) is the cardinality of Z∗n, i.e., φ(n) = |Z∗n|.
Properties of φ(n):

1 If p is prime, then φ(p) = p − 1.

2 More generally, if p is prime and k ≥ 1, then
φ(pk) = pk − pk−1 = (p − 1)pk−1.

3 If gcd(m, n) = 1, then φ(mn) = φ(m)φ(n).
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Example: φ(26)

Can compute φ(n) for all n ≥ 1 given the factorization of n.

φ(126) = φ(2) · φ(32) · φ(7)

= (2− 1) · (3− 1)(32−1) · (7− 1)

= 1 · 2 · 3 · 6 = 36.

The 36 elements of Z∗126 are:

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53,
55, 59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101,
103, 107, 109, 113, 115, 121, 125.
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A formula for φ(n)

Here is an explicit formula for φ(n).

Theorem

Write n in factored form, so n = pe1
1 · · · p

ek
k , where p1, . . . , pk are

distinct primes and e1, . . . , ek are positive integers.a Then

φ(n) = (p1 − 1) · pe1−1
1 · · · (pk − 1) · pek−1

k .

aBy the fundamental theorem of arithmetic, every integer can be written
uniquely in this way up to the ordering of the factors.

When p is prime, we have simply φ(p) = (p − 1), so for the
product of two distinct primes, φ(pq) = (p − 1)(q − 1).
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⊗ on Zn

Recall the operation ⊗ is defined on all of Zn.

Theorem

Z∗n is closed under ⊗.

In words, if a and b are both in Z∗n, then a⊗ b is also in Z∗n.

Proof.

If neither a nor b share a prime factor with n, then neither does
their product ab.
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Z∗n is an Abelean group

An Abelean group is a set with an associative and commutative
binary operation having left and right inverses and an identity
element.

Z∗n under ⊗ is an Abelean group. This means that it satisfies the
following properties:

Associativity ⊗ is an associative binary operation on Z∗n. In
particular, Z∗n is closed under ⊗.

Identity 1 is an identity element for ⊗ in Z∗n, that is
1⊗ x = x ⊗ 1 = x for all x ∈ Z∗n.

Inverses For all x ∈ Z∗n, there exists another element
x−1 ∈ Z∗n such that x ⊗ x−1 = x−1 ⊗ x = 1.

Commutativity ⊗ is commutative, i.e., x ⊗ y = y ⊗ x for all
x , y ∈ Z∗n.
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Example: Z∗26

Let n = 26 = 2 · 13. Then

Z∗26 = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}
φ(26) = |Z∗26| = 12.

Inverses of the elements in Z∗26:

x 1 3 5 7 9 11 15 17 19 21 23 25

x−1 1 9 21 15 3 19 7 23 11 5 17 25
≡n 1 9 −5 −11 3 −7 7 −3 11 5 −9 −1

Bottom row gives equivalent integers in range [−12, . . . , 13].
Note that (26− x)−1 = −x−1.
Hence, last row reads same back to front except for change of sign.
Once the inverses for the first six numbers are known, the rest of
the table is easily filled in.
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More to prove

It is not obvious from what I have said so far that inverses always
exist for members of Z∗n.

The fact that they do will become apparent later when we show
how to compute inverses.
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Repeated multiplication in a finite group

General property of finite groups: If any element x is repeatedly
multiplied by itself, the result is eventually 1.

Example, for x = 5 ∈ Z∗26: 5, 25, 21, 1, 5, 25, 21, 1,. . .

Let xk denote the result of multiplying x by itself k times.
The order of x , written ord(x), is the smallest integer k ≥ 1 for
which xk = 1.

Note added after class: The first repeated element must be x . If not,

then some y 6= x is the first to repeat. The element immediately

preceding each occurrence of y is yx−1. But then yx−1 is the first to

repeat, a contradiction. Hence, x = xk+1 for some k ≥ 1, so

xk = xk+1x−1 = xx−1 = 1.
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Euler’s and Fermat’s theorem

For any group, ord(x) divides the order (# elements) of the group.

For Z∗n, we therefore have ord(x) |φ(n).

Theorem (Euler’s theorem)

xφ(n) ≡ 1 (mod n) for all x ∈ Z∗n.

As a special case, we have

Theorem (Fermat’s theorem)

x (p−1) ≡ 1 (mod p) for all x, 1 ≤ x ≤ p − 1, where p is prime.
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An important corollary

Corollary

Let r ≡ s (mod φ(n)). Then ar ≡ as (mod n) for all a ∈ Z∗n.

Proof.

If r ≡ s (mod φ(n)), then r = s + uφ(n) for some integer u. Then
using Euler’s theorem, we have

ar ≡ as+uφ(n) ≡ as · (au)φ(n) ≡ as · 1 ≡ as (mod n),

as desired.

Michael J. Fischer CPSC 467b, Lecture 9 27/32



Outline Zn Modarith GCD Modmult

Application to RSA

Recall the RSA encryption and decryption functions

Ee(m) = me mod n

Dd(c) = cd mod n

where n = pq is the product of two distinct large primes p and q.

This corollary gives a sufficient condition on e and d to ensure that
the resulting cryptosystem works. That is, we require that

ed ≡ 1 (mod φ(n)).

Then Dd(Ee(m)) ≡ med ≡ m1 ≡ m (mod n) for all messages
m ∈ Z∗n.
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Messages not in Z∗n

What about the case of messages m ∈ Zn − Z∗n?
There are several answers to this question.

1 Alice doesn’t really want to send such messages if she can
avoid it.

2 If Alice sends random messages, her probability of choosing a
message not in Z∗n is very small — only about 2/

√
n.

3 RSA does in fact work for all m ∈ Zn, even though Euler’s
theorem fails for m 6∈ Z∗n.
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Why Alice might want to avoid sending messages not in Z∗n

If m ∈ Zn − Z∗n, either p |m or q |m (but not both because
m < pq).

If Alice ever sends such a message and Eve is astute enough to
compute gcd(m, n) (which she can easily do), then Eve will
succeed in breaking the cryptosystem.

Why?
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Why a random message is likely to be in Z∗n

The number of messages in Zn − Z∗n is only

n − φ(n) = pq − (p − 1)(q − 1) = p + q − 1

out of a total of n = pq messages altogether.

If p and q are both 512 bits long, then the probability of choosing
a bad message is only about 2 · 2512/21024 = 1/2511.

Such a low-probability event will likely never occur during the
lifetime of the universe.

Michael J. Fischer CPSC 467b, Lecture 9 31/32



Outline Zn Modarith GCD Modmult

RSA works anyway

For m ∈ Zn − Z∗n, RSA works anyway, but for different reasons.

For example, if m = 0, it is clear that (0e)d ≡ 0 (mod n), yet
Euler’s theorem fails since 0φ(n) 6≡ 1 (mod n).

We omit the proof of this curiosity.
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