CPSC 467b: Cryptography and Computer Security
Lecture 10

Michael J. Fischer

Department of Computer Science
Yale University

February 10, 2010

Michael J. Fischer CPSC 467b, Lecture 10 1/30



@ Generating RSA Encryption and Decryption Exponents

@ Diophantine equations and modular inverses
@ General form
@ Extended Euclidean algorithm

© Generating RSA Modulus
@ Finding primes by guess and check
@ Density of primes

@ Primality Tests

@ Strong primality tests
@ Weak tests of compositeness

Michael J. Fischer CPSC 467b, Lecture 10 2/30



RSA exponents
Recall RSA exponent requirement

We showed in the last lecture that RSA decryption works for
m € Zj, if e and d are chosen so that

ed =1 (mod ¢(n)), (1)
that is, d is e1 (the inverse of e) in Z )

How does Alice choose e and d to satisfy (1)?
@ Choose a random integer e € Z;(n).

@ Solve (1) for d.

Michael J. Fischer CPSC 467b, Lecture 10 3/30



RSA exponents
2 *
Sampling from Z7

How does Alice find random e € ZZ(n)?

If Z;(n is large enough, then she can just choose random elements
from Z 4,y until she encounters one that also lies in Zj;(n).

A candidate element e lies in Z%  iff ged(e, ¢(n)) = 1, which can
be computed efficiently using the Euclidean algorithm.?

Lp(n) itself is easily computed for an RSA modulus n = pq since
@(n) = (p—1)(g — 1) and Alice knows p and g.

Michael J. Fischer CPSC 467b, Lecture 10 4/30



RSA exponents

How large is large enough?

If &(é(n)) (the size of Z:‘;(n)) is much smaller than ¢(n) (the size
of Zy(,)), Alice might have to search for a long time before finding

a suitable candidate for e.

In general, Z7, can be considerably smaller than m.
Example:
m=|Z,=2-3-5-7=210
o(m)=|Z:|=1-2-4-6=48.

In this case, the probability that a randomly-chosen element of Z,,
falls in Z7, is only 48/210 = 8/35 = 0.228... .

Michael J. Fischer CPSC 467b, Lecture 10 5/30



RSA exponents

A lower bound on ¢(m)/m

The following theorem provides a crude lower bound on how small
Z7. can be relative to the size of Z,,.

For all m > 2,

|25 1
>
1Zm| — 1+ [logo m]

Michael J. Fischer CPSC 467b, Lecture 10 6/30



RSA exponents

Write m = [[;_; p{’, where p; is the i prime that divides m and
e; > 1. Then ¢(m) = [T'_,(pi — 1)pf ", so

Zal  o(m)  Tlia(pi—Dpf™' 1 (pi—1
- ,H1< pi ) - @

Zm| — m [Tz P

Michael J. Fischer CPSC 467b, Lecture 10 7/30



RSA exponents

1Zol _ o(m) _ Hialpi—1pf ™ _ I <P—1) L@

1Zn]  m Hle p?i i=1

To estimate the size of [[/_,(p; — 1)/p;, note that

(%)= (=)

This follows since (x — 1)/x is monotonic increasing in x, and
pi > i+ 1. Then

t .
pi—1 I 1 2 3 t 1
> e _— ==
H( pi >_H(i+1) 2 3 4 t+1 t+4+1 (3)

i=1

Michael J. Fischer CPSC 467b, Lecture 10 7/30



RSA exponents

1Z5l _ o(m) _ TTia(pi—1)pf " _ H <P—1) L@

1Zn]  m Hf:l p?i i=1

t t o
pi — 1 i 12 3 t 1
> =202 00c - -~ (3
H( pi >_i1:[1(i+1> 233 71 1 O

i=1

Clearly t < |log, m| since 28 < [[i_; pi < m and t is an integer.
Combining this with equations (2) and (3) gives the desired result.

|Z% | 1 1
>
|Zm| — t+1 ~ 14 |log, m|

: (4)

Ol

Michael J. Fischer CPSC 467b, Lecture 10 7/30



RSA exponents

Expected difficulty of choosing RSA exponent e

For n a 1024-bit integer, ¢(n) < n < 21024,
Hence, log,(#(n)) < 1024, so [log,(¢p(n))| < 1023.

By the theorem, the fraction of elements in Z4, that also lie in
ZZ(n) is at least
1 S 1
1+ [log, #(n)| — 1024

Therefore, the expected number of random trials before Alice finds
a number in Z’;(n) is provably at most 1024 and is likely much
smaller.

Michael J. Fischer CPSC 467b, Lecture 10 8/30



RSA exponents
RSA decryption exponent d

After Alice chooses e € Z;‘S(n), how does she find d?

That is, how does she solve
ed =1 (mod ¢(n))?

Note that d, if it exists, is a multiplicative inverse of e (mod ¢(n)),
that is, a number that, when multiplied by e, gives 1 (mod ¢(n)).

Michael J. Fischer CPSC 467b, Lecture 10 9/30



Diophantine General form Extended Euclidean algorithm

General Diophantine equations

A Diophantine equation is a linear equation in two unknowns over
the integers.

ax+ by =c (5)
Here, a, b, ¢ are given integers. A solution consists of integer
values for the unknowns x and y that make (5) true.

To put (1) into this form, we note that ed =1 (mod ¢(n)) iff
ed + ug(n) = 1 for some integer u.

This is seen to be an equation in the form of (5) where the
unknowns x and y are d and u, respectively, and the coefficients
a, b, c are e, ¢(n), 1, respectively.

Michael J. Fischer CPSC 467b, Lecture 10 10/30



General form Extended Euclidean algorithm

Diophantine

Existence of solution

The Diophantine equation
ax + by =c

has a solution over Z iff gcd(a, b)|c.

It can be solved by a process akin to the Euclidean algorithm,
which we call the Extended Euclidean algorithm.

Michael J. Fischer CPSC 467b, Lecture 10 11/30



Diophantine General form Extended Euclidean algorithm

Extended Euclidean algorithm

The algorithm generates a sequence of triples of numbers
T; = (ri, uj, vi), each satisfying the invariant

ri = auj + bv; > 0.

Michael J. Fischer CPSC 467b, Lecture 10

12/30



Diophantine General form Extended Euclidean algorithm

Extended Euclidean algorithm

The algorithm generates a sequence of triples of numbers
T; = (ri, uj, vi), each satisfying the invariant

rp = au; + bV,' > 0. (6)
) ifa>0

—a,-1,0) ifa<o0
)

1 if b>0
—b,0,—1) ifb<0

Michael J. Fischer CPSC 467b, Lecture 10 12/30



Diophantine General form Extended Euclidean algorithm

Extended Euclidean algorithm

ri = au; + bv; > 0. (6)

Tiyo is obtained by subtracting a multiple of T;;1 from from T; so
that ri;o < riy1. This is similar to the way the Euclidean algorithm
obtains (a mod b) from a and b.

Michael J. Fischer CPSC 467b, Lecture 10 12/30



Diophantine General form Extended Euclidean algorithm

Extended Euclidean algorithm

ri = au; + bv; > 0. (6)

Tiyo is obtained by subtracting a multiple of T;;1 from from T; so
that ri;o < riy1. This is similar to the way the Euclidean algorithm
obtains (a mod b) from a and b.

In detail, let gi+1 = [ri/ri+1]. Then Tipp = T; — git1Tit1, thatis,
fiv2 = ri — Qjy1fit1 = ri mod riyq

Uiy2 = Ui — qj+1Uj41
Vig2 = Vi — gi+1Vit1

Michael J. Fischer CPSC 467b, Lecture 10 12/30



Diophantine General form Extended Euclidean algorithm

Extended Euclidean algorithm

ri = au; + bv; > 0. (6)

Tiyo is obtained by subtracting a multiple of T;;1 from from T; so
that ri;o < riy1. This is similar to the way the Euclidean algorithm
obtains (a mod b) from a and b.

In detail, let gi+1 = [ri/ri+1]. Then Tipp = T; — git1Tit1, thatis,

liy2 = ri — Qit1tiq1 = ri mod riyq
Uiy2 = Ui — qj+1Uj41
Vig2 = Vi — gi+1Vit1

The sequence of generated pairs (r1, r2), (r2,13), (r3,11), ... is
exactly the same as the sequence generated by the Euclidean
algorithm. We stop when r; = 0. Then r,_; = gcd(a, b).

Michael J. Fischer CPSC 467b, Lecture 10 12/30



Diophantine General form Extended Euclidean algorithm

Extended Euclidean algorithm

ri = au; + bv; > 0. (6)

From (6) it follows that

gcd(a, b) = aur—1 + bve_1 (7)

Michael J. Fischer CPSC 467b, Lecture 10 12/30



Diophantine General form Extended Euclidean algorithm

Finding all solutions

Returning to the original equation,
ax+ by =c (5)

if ¢ = ged(a, b), then x = uy—1 and y = v;_1 is a solution.

If ¢ = k- gcd(a, b) is a multiple of ged(a, b), then x = kuy—; and
y = kv¢_1 is a solution.

Otherwise, gcd(a, b) does not divide ¢, and one can show that (5)
has no solution.

See handout 6 for further details, as well as for a discussion of how
many solutions (5) has and how to find all solutions.

Michael J. Fischer CPSC 467b, Lecture 10

13/30


http://zoo.cs.yale.edu/classes/cs467/2010s/course/handouts/ho06.pdf

Diophantine General form Extended Euclidean algorithm

Example of extended Euclidean algorithm

Suppose one wants to solve the equation
31x — 45y =3 (8)
Here, a = 31 and b = —45. We begin with the triples

1 = (31,1,0)
T, = (45,0,-1)

Michael J. Fischer CPSC 467b, Lecture 10 14/30



Diophantine

Computing the triples

General form Extended Euclidean algorithm

The computation is shown in the following table:

Michael J. Fischer

i or uj Vi | gi
131 1 0

2145 0 -1]0
3131 1 0| 1
4114 -1 —-1]| 2
51 3 3 21 4
6| 2 —-13 -9 1
71 1 16 11| 2
8| 0 —45 -31

CPSC 467b, Lecture 10

15/30



Diophantine General form Extended Euclidean algorithm

Extracting the solution

From T7 = (1,16,11), we obtain the solution x =16 and y =11

to the equation
1 =31x — 45y

We can check this by substituting for x and y:
31-16+ (—45)-11 =496 — 495 = 1.

The solution to
31x — 45y =3 (8)

isthen x=3-16 =48 and y =3-11 = 33.

Michael J. Fischer CPSC 467b, Lecture 10 16/30



RSA modulus Random primes Density of primes

Recall RSA modulus

Recall the RSA modulus, n = pg. The numbers p and g should be
random distinct primes of about the same length.

The method for finding p and g is similar to the
“guess-and-check” method used to find random numbers in Z7,,.

Namely, keep generating random numbers p of the right length
until a prime is found. Then keep generating random numbers g of
the right length until a prime different from p is found.

Michael J. Fischer CPSC 467b, Lecture 10 17/30



RSA modulus Random primes Density of primes

Generating random primes of a given length

To generate a k-bit prime:
@ Generate k — 1 random bits.
@ Put a "1" at the front.
@ Regard the result as binary number, and test if it is prime.

We defer the question of how to test if the number is prime and
look now at the expected number of trials before this procedure
will terminate.

Michael J. Fischer CPSC 467b, Lecture 10 18/30



RSA modulus Random primes Density of primes

Expected number of trials to find a prime

The above procedure samples uniformly from the set
By = Zyk — Zyk-1 of binary numbers of length exactly k.

Let px be the fraction of elements in By that are prime. Then the
expected number of trials to find a prime is 1/py.

While py is difficult to determine exactly, the celebrated Prime
Number Theorem allows us to get a good estimate on that
number.

Michael J. Fischer CPSC 467b, Lecture 10 19/30



RSA modulus Random primes Density of primes

Prime number function

Let m(n) be the number of numbers < n that are prime.

For example, 7(10) = 4 since there are four primes < 10, namely,
2,3,5 7.

Theorem (prime number theorem)

7(n) =~ n/(In n)

where In n is the natural logarithm log, n.

Notes:

@ We ignore the critical issue of how good an approximation this is.
The interested reader is referred to a good mathematical text on
number theory.

@ Here e =2.71828... is the base of the natural logarithm, not to be
confused with the RSA encryption exponent, which, by an
unfortunate choice of notation, we also denote by e.

Michael J. Fischer CPSC 467b, Lecture 10 20/30



RSA modulus Random primes Density of primes

Likelihood of randomly finding a prime

The chance that a randomly picked number in Z,, is prime is

m(n—1)  n-1 1
n n-ln(n—1)  Inn’

Since By = Zyk — Zk-1, we have

m(2k — 1) — w(2k-1 —1)
Pk = Sk—1
2r(2k —1)  w(2k 1 —1)
2k B k-1
2 1 1 1

N2k n2k1 ~In2k  kin2'

%

Hence, the expected number of trials before success is &~ kIn 2.
For k = 512, this works out to 512 x 0.693... ~ 355.

Michael J. Fischer CPSC 467b, Lecture 10 21/30



Primality ~ Strong primality tests Compositeness

Algorithms for testing primality

The remaining problem for generating an RSA key is how to test if
a large number is prime.

@ At first sight, this problem seems as hard as factoring.

Michael J. Fischer CPSC 467b, Lecture 10 22/30



Primality ~ Strong primality tests Compositeness

Algorithms for testing primality

The remaining problem for generating an RSA key is how to test if
a large number is prime.

@ At first sight, this problem seems as hard as factoring.

@ Indeed, no deterministic polynomial time algorithm was known
for testing primality until 2002 when Manindra Agrawal,
Neeraj Kayal and Nitin Saxena found a deterministic primality
test which runs in time O((log n)'2). This was later improved
to O((log n)®).

Michael J. Fischer CPSC 467b, Lecture 10 22/30



Primality ~ Strong primality tests Compositeness

Algorithms for testing primality

The remaining problem for generating an RSA key is how to test if
a large number is prime.

@ At first sight, this problem seems as hard as factoring.

@ Indeed, no deterministic polynomial time algorithm was known
for testing primality until 2002 when Manindra Agrawal,
Neeraj Kayal and Nitin Saxena found a deterministic primality
test which runs in time O((log n)?). This was later improved
to O((log n)®).

@ Even now it is not known whether any deterministic algorithm
is feasible in practice.

Michael J. Fischer CPSC 467b, Lecture 10 22/30



Primality ~ Strong primality tests Compositeness

Algorithms for testing primality

The remaining problem for generating an RSA key is how to test if
a large number is prime.

At first sight, this problem seems as hard as factoring.

Indeed, no deterministic polynomial time algorithm was known
for testing primality until 2002 when Manindra Agrawal,
Neeraj Kayal and Nitin Saxena found a deterministic primality
test which runs in time O((log n)?). This was later improved
to O((log n)®).

Even now it is not known whether any deterministic algorithm
is feasible in practice.

However, there do exist fast probabilistic algorithms for
testing primality.

Michael J. Fischer CPSC 467b, Lecture 10

22/30



Primality ~ Strong primality tests Compositeness

Tests for primality

A primality test is a deterministic procedure that, given as input an
integer n > 2, correctly returns the answer ‘composite’ or ‘prime’.

To arrive at a probabilistic algorithm, we extend the notion of a
primality test in two ways:

@ We give it an extra “helper” string a.

@ We allow it to answer ‘?’, meaning "l don't know" .

Given input n and helper string a, such an algorithm may correctly
answer either ‘composite’ or ‘?" when n is composite, and it may
correctly answer either ‘prime’ or ‘?" when n is prime.

If the algorithm gives a non-'?" answer, we say that the helper
string a is a witness to that answer.

Michael J. Fischer CPSC 467b, Lecture 10 23/30



Primality ~ Strong primality tests Compositeness

Probabilistic primality testing algorithm

We can build a probabilistic primality testing algorithm from an
extended primality test T(n, a).

Algorithm Py(n):
repeat forever {
Generate a random helper string a;
Let r = T(n, a);
if (r #'7") return r;

¥

This algorithm has the property that it might not terminate (in
case there are no witnesses to the correct answer for n), but when
it does terminate, the answer is correct.

Michael J. Fischer CPSC 467b, Lecture 10 24/30



Primality ~ Strong primality tests Compositeness

Trading off non-termination against possibility of failure

By bounding the number of trials, termination is guaranteed at the
cost of possible failure. Let t be the maximum number of trials
that we are willing to perform. The algorithm then becomes:

Algorithm Py(n, t):
repeat ¢t times {
Generate a random helper string a;

Let r = T(n, a);
if (r #'7") return r;

}

return ‘7’;

Now the algorithm is allowed to give up and return ‘7', but only
after trying t times to find the correct answer.

Michael J. Fischer CPSC 467b, Lecture 10

25/30



Primality ~ Strong primality tests Compositeness

Strong primality tests

A primality test T(n, a) is strong if there are “many” witnesses to
the correct answer.

For a strong test, the probability will be “high” of finding a witness
and the algorithm will usually succeed.

Unfortunately, we do not know of any strong primality test that
has lots of witnesses to the correct answer for every n > 2.

Fortunately, a weaker test can still be useful.

Michael J. Fischer CPSC 467b, Lecture 10 26/30



Primality ~ Strong primality tests Compositeness

Weak tests

A weak test of compositeness is only required to have many
witnesses to the correct answer ‘composite’ when n is in fact
composite.

When n is prime, a weak test always answers ‘7', so there are no
witnesses to n being prime.

Hence, the test either outputs ‘composite’ or ‘?’ but never
‘prime’.

An answer of ‘composite’ means that n is definitely composite,
but these tests can never say for sure that n is prime.

Michael J. Fischer CPSC 467b, Lecture 10 27/30



Primality ~ Strong primality tests Compositeness

Algorithm P, using a weak test

When algorithm P, uses a weak test of compositeness, an answer
of ‘composite’ means that n is definitely composite.

Assuming n is composite, there are many witnesses to n's being
composite, and t is sufficiently large, then the probability that
P>(n, t) outputs ‘composite’ will be high.

However, if n is prime, then both the underlying weak test T and
P itself will always output ‘?". It is tempting to interpret Ps's
output of ‘?" to mean “n is probably prime”.

However, it makes no sense to say that n is probably prime; n
either is or is not prime. But what does make sense is to say that
the probability is small that P, answers ‘?' when n is in fact
composite.

Michael J. Fischer CPSC 467b, Lecture 10 28/30



Primality ~ Strong primality tests Compositeness

Finding a random prime

Algorithm GenPrime(k):
const int t=20;
do {
Generate a random k-bit integer x;
} while ( Py(x, t) == ‘composite’ );
return x;

The number x that GenPrime() returns has the property that P,
failed to find a witness, but there is still the possibility that x is
composite.

Michael J. Fischer CPSC 467b, Lecture 10 29/30



Primality ~ Strong primality tests Compositeness

Success probability for GenPrime(k)

We are interested in the probability that the result returned by
GenPrime(k) is prime.

This probability depends on both the failure probability of P> and
also on the density of primes in the set being sampled.

The fewer primes there are, the more composite numbers are likely
to be tried before a prime is encountered, and the more
opportunity there is for P; to fail.

Michael J. Fischer CPSC 467b, Lecture 10 30/30



	Outline
	Generating RSA Encryption and Decryption Exponents
	Diophantine equations and modular inverses
	General form
	Extended Euclidean algorithm

	Generating RSA Modulus
	Finding primes by guess and check
	Density of primes

	Primality Tests
	Strong primality tests
	Weak tests of compositeness


