CPSC 467b: Cryptography and Computer Security Lecture 11

Michael J. Fischer
Department of Computer Science Yale University

February 15, 2010
(1) Primality Tests (cont.)

- Weak tests of compositeness
- Reformulation of weak tests of compositeness
- Examples of weak tests
(2) Chinese Remainder Theorem
- Homomorphic property of χ
- RSA Decryption Works for All of Z_{n}
(3) RSA Security
- Factoring n
- Computing $\phi(n)$
- Finding d directly
- Finding plaintext

Weak tests

Recall: A weak test of compositeness $T(n, a)$ is only required to have many witnesses to the correct answer when n is composite.

When n is prime, a weak test always answers '?', so there are no witnesses to n being prime.

Hence, the test either outputs 'composite' or '?' but never 'prime'.

An answer of 'composite' means that n is definitely composite, but these tests can never say for sure that n is prime.

Use of a weak test of compositeness

Let $T(n, a)$ be a weak test of compositeness. Algorithm P_{2} is a "best effort" attempt to prove that n is composite.

Since T is a weak test, we can slightly simplify P_{2}.
Algorithm $P_{2}(n, t)$: repeat t times $\{$

Generate a random helper string a; if ($T(n, a)=$ 'composite') return 'composite';
\} return '?';
P_{2} returns 'composite' just in case it succeeds in finding a helper string a for which the test succeeds.

Such a string a is a witness to the compositeness of n.

Finding a random prime

P_{2} is used in generating a random prime.
Algorithm GenPrime(k): const int $t=20$; do \{

Generate a random k-bit integer x;
$\}$ while ($P_{2}(x, t)==$ 'composite'); return x;

The number x that GenPrime() returns has the property that P_{2} failed to find a witness to its compositeness after t trials, but there is still the possibility that x is composite.

Boolean test of compositeness

A Boolean function $\tau(n, a)$ can be interpreted as a weak test of compositeness by taking true to mean 'composite' and false to mean '?'.

We may write $\tau_{a}(n)$ to mean $\tau(n, a)$.

- If $\tau_{a}(n)=$ true, we say that τ_{a} succeeds on n, and a is a witness to the compositeness of n.
- If $\tau_{a}(n)=$ false, then τ_{a} fails and gives no information about the compositeness of n.

Clearly, if n is prime, then τ_{a} fails on n for all a, but if n is composite, then τ_{a} may succeed for some values of a and fail for others.

Useful tests

A test of compositeness τ is useful if

- there is a feasible algorithm that computes $\tau(n, a)$;
- for every composite number $n, \tau_{a}(n)$ succeeds for a fraction $c>0$ of the help strings a.
Suppose for simplicity that $c=1 / 2$ and one computes $\tau_{a}(n)$ for 100 randomly-chosen values for a.
- If any of the τ_{a} succeeds, we have a proof a that n is composite.
- If all fail, we don't know whether or not n is prime or composite. But we do know that if n is composite, the probability that all 100 tests will fail is only $1 / 2^{100}$.

Application to RSA

In practice, we use GenPrime(k) to choose RSA primes p and q, where the constant t is set according to the number of witnesses and the confidence levels we would like to achieve.

For $c=1 / 2$, using $t=20$ trials gives us a failure probability of about one in a million (for each of p and q), or about two in a million of generating a bad RSA modulus. t can be increased if this risk of failure is deemed to be too large.

Finding weak tests of compositeness

We still need to find useful weak tests of compositeness.
We begin with two simple examples. While neither is useful, they illustrate some of the ideas behind the useful tests that we will present later.

The division test $\delta_{2}(n)$

Let

$$
\delta_{a}(n)=(2 \leq a \leq n-1 \text { and } a \mid n) .
$$

Test δ_{a} succeeds on n iff a is a proper divisor of n, which indeed implies that n is composite. Thus, $\left\{\delta_{a}\right\}_{a \in \mathbf{Z}}$ is a valid test of compositeness.

Unfortunately, it isn't useful since the fraction of witnesses to n's compositeness is exponentially small.

For example, if $n=p q$ for p, q prime, then the only witnesses are p and q, and the only tests that succeed are δ_{p} and δ_{q}.

The Fermat test $\zeta_{a}(n)$

Let

$$
\zeta_{a}(n)=\left(2 \leq a \leq n-1 \text { and } a^{n-1} \not \equiv 1(\bmod n)\right) .
$$

By Fermat's theorem, if n is prime and $\operatorname{gcd}(a, n)=1$, then $a^{n-1} \equiv 1(\bmod n)$.

Hence, if $\zeta_{a}(n)$ succeeds, it must be the case that n is not prime.
This shows that $\left\{\zeta_{a}\right\}_{a \in \mathbf{Z}}$ is a valid test of compositeness.
For this test to be useful, we would need to know that every composite number n has a constant fraction of witnesses.

Carmichael numbers (Fermat pseudoprimes)

Unfortunately, there are certain composite numbers n called Carmichael numbers ${ }^{1}$ for which there are no witnesses, and all of the tests ζ_{a} fail. Such n are fairly rare, but they do exist. The smallest such n is $561=3 \cdot 11 \cdot 17 .{ }^{2}$

Hence, Fermat tests are not useful tests of compositeness according to our definition, and they are unable to distinguish Carmichael numbers from primes.

We defer discussion of weak tests that are both valid and useful until we have developed some more needed number theory.

[^0]
Systems of congruence equations

Theorem (Chinese remainder theorem)

Let $n_{1}, n_{2}, \ldots, n_{k}$ be positive pairwise relatively-prime integers ${ }^{a}$, let $n=\prod_{i=1}^{k} n_{i}$, and let $a_{i} \in \mathbf{Z}_{n_{i}}$ for $i=1, \ldots, k$. Consider the system of congruence equations with unknown x :

$$
\begin{align*}
x & \equiv a_{1}\left(\bmod n_{1}\right) \\
x & \equiv a_{2}\left(\bmod n_{2}\right) \\
& \vdots \tag{1}\\
x & \equiv a_{k}\left(\bmod n_{k}\right)
\end{align*}
$$

(1) has a unique solution $x \in \mathbf{Z}_{n}$.
${ }^{a}$ This means that $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for all $1 \leq i<j \leq k$.

How to solve congruence equations

To solve for x, let

$$
N_{i}=n / n_{i}=\underbrace{n_{1} n_{2} \ldots n_{i-1}} \cdot \underbrace{n_{i+1} \ldots n_{k}}
$$

and compute $M_{i}=N_{i}^{-1} \bmod n_{i}$, for $1 \leq i \leq k$.
$N_{i}^{-1}\left(\bmod n_{i}\right)$ exists since $\operatorname{gcd}\left(N_{i}, n_{i}\right)=1$. (Why?)
We can compute N_{i}^{-1} by solving the associated Diophantine equation as described in Lecture 10.

The solution to (1) is

$$
\begin{equation*}
x=\left(\sum_{i=1}^{k} a_{i} M_{i} N_{i}\right) \bmod n \tag{2}
\end{equation*}
$$

Correctness

Lemma

$$
M_{j} N_{j} \equiv \begin{cases}1\left(\bmod n_{i}\right) & \text { if } j=i \\ 0\left(\bmod n_{i}\right) & \text { if } j \neq i\end{cases}
$$

Proof.

$M_{i} N_{i} \equiv 1\left(\bmod n_{i}\right)$ since $M_{i}=N_{i}^{-1} \bmod n_{i}$.
If $j \neq i$, then $M_{j} N_{j} \equiv 0\left(\bmod n_{i}\right)$ since $n_{i} \mid N_{j}$.
It follows from the lemma and the fact that $n_{i} \mid n$ that

$$
\begin{equation*}
x \equiv \sum_{i=1}^{k} a_{i} M_{i} N_{i} \equiv a_{i}\left(\bmod n_{i}\right) \tag{3}
\end{equation*}
$$

for all $1 \leq i \leq k$, establishing that (2) is a solution of (1).

Uniqueness

To see that the solution is unique in \mathbf{Z}_{n}, let $\chi: \mathbf{Z}_{n} \rightarrow \mathbf{Z}_{n_{1}} \times \ldots \times \mathbf{Z}_{n_{k}}$ be the mapping

$$
x \mapsto\left(x \bmod n_{1}, \ldots, x \bmod n_{k}\right)
$$

χ is a surjection ${ }^{3}$ since $\chi(x)=\left(a_{1}, \ldots, a_{k}\right)$ iff x satisfies (1).
Since also $\left|\mathbf{Z}_{n}\right|=\left|\mathbf{Z}_{n_{1}} \times \ldots \times \mathbf{Z}_{n_{k}}\right|, \chi$ is a bijection, and there is only one solution to (1) in \mathbf{Z}_{n}.

[^1]
An alternative proof of uniqueness

A less slick but more direct way of seeing uniqueness is to suppose that $x=u$ and $x=v$ are both solutions to (1).

Then $u \equiv v\left(\bmod n_{i}\right)$, so $n_{i} \mid(u-v)$ for all i.
By the pairwise relatively prime condition on the n_{i}, it follows that $n \mid(u-v)$, so $u \equiv v(\bmod n)$. Hence, the solution is unique in \mathbf{Z}_{n}.

Operations on tuples

The bijection χ establishes a one-to-one correspondence between members of \mathbf{Z}_{n} and k-tuples $\left(a_{1}, \ldots, a_{k}\right)$ in $\mathbf{Z}_{n_{1}} \times \ldots \times \mathbf{Z}_{n_{k}}$. This lets us reason about and compute with k-tuples and then translate the results back to \mathbf{Z}_{n}.

The homomorphic property of χ means that performing an arithmetic operation on $x \in \mathbf{Z}_{n}$ corresponds to performing the corresponding operation on each of the components of $\chi(x)$.

Let $\odot \in\{+,-, \times\}, \chi(x)=\left(a_{1}, \ldots, a_{k}\right), \chi(y)=\left(b_{1}, \ldots, b_{k}\right)$.
Then

$$
\begin{align*}
& \chi((x \odot y) \bmod n) \\
& \quad=\left(\left(a_{1} \odot b_{1}\right) \bmod n_{1}, \ldots,\left(a_{k} \odot b_{k}\right) \bmod n_{k}\right) . \tag{4}
\end{align*}
$$

This follows because $n_{i} \mid n$, so

$$
((x \odot y) \bmod n) \bmod n_{i}=\left(a_{i} \odot b_{i}\right) \bmod n_{i} .
$$

Example

Let $n_{1}=4, n_{2}=3, n_{3}=7$, so $n=84$.

$$
\begin{gathered}
\chi(15)=(3,0,1) \\
\chi(23)=(3,2,2) \\
\chi((15 \times 23) \bmod n)=\chi(345 \bmod 84)=\chi(9) \\
=(9 \bmod 4,9 \bmod 3,9 \bmod 7)=(1,0,2)
\end{gathered}
$$

Check:

$$
\begin{aligned}
& ((3 \times 3) \bmod 4=(9 \bmod 4)=1 \\
& ((0 \times 2) \bmod 3=(0 \bmod 3)=0 \\
& ((1 \times 2) \bmod 7=(2 \bmod 7)=2
\end{aligned}
$$

An application of the Chinese Remainder Theorem

We showed previously that RSA decryption works when $m, c \in \mathbf{Z}_{n}^{*}$ but omitted the proof that it actually works for all $m, c \in \mathbf{Z}_{n}$. We use the Chinese Remainder Theorem to supply this missing piece.

Theorem (RSA encryption is invertible over all of \mathbf{Z}_{n})
Let $n=p q$ be an RSA modulus, p, q distinct primes, and let e and d be the RSA encryption and decryption exponents, respectively. Then $m^{\text {ed }} \equiv m(\bmod n)$ for all $m \in \mathbf{Z}_{n}$.

Proof

Define $a=(m \bmod p)$ and $b=(m \bmod q)$, so

$$
\begin{align*}
& m \equiv a(\bmod p) \tag{5}\\
& m \equiv b(\bmod q)
\end{align*}
$$

Raising both sides to the power ed gives

$$
\begin{align*}
& m^{e d} \equiv a^{e d}(\bmod p) \\
& m^{e d} \equiv b^{e d}(\bmod q) \tag{6}
\end{align*}
$$

We will show that

$$
\begin{align*}
& a^{e d} \equiv a(\bmod p) \\
& b^{e d} \equiv b(\bmod q) \tag{7}
\end{align*}
$$

Combining (6) with (7) yields

$$
\begin{align*}
& m^{e d} \equiv a(\bmod p) \\
& m^{e d} \equiv b(\bmod q) \tag{8}
\end{align*}
$$

Proof (cont.)

From (5) and (8), we see that both m and $m^{\text {ed }}$ are solutions to the system of equations

$$
\begin{align*}
& x \equiv a(\bmod p) \\
& x \equiv b(\bmod q) \tag{9}
\end{align*}
$$

By the Chinese Remainder Theorem, the solution to (9) is unique modulo n, so $m^{e d} \equiv m(\bmod n)$ as desired.

It remains to show

$$
\begin{align*}
& a^{e d} \equiv a(\bmod p) \\
& b^{e d} \equiv b(\bmod q) \tag{7}
\end{align*}
$$

Proof (cont.)

We first argue that $a^{e d} \equiv a(\bmod p)$.
If $a \equiv 0(\bmod p)$, then obviously $a^{e d} \equiv 0 \equiv a(\bmod p)$.
If $a \not \equiv 0(\bmod p)$, then $\operatorname{gcd}(a, p)=1$ since p is prime, so $a \in \mathbf{Z}_{p}^{*}$.
By Euler's theorem, $a^{\phi(p)} \equiv 1(\bmod p)$.
Since ed $\equiv 1(\bmod \phi(n))$, we have

$$
e d=1+u \phi(n)=1+u \phi(p) \phi(q)
$$

for some integer u. Hence,

$$
a^{e d}=a^{1+u \phi(p) \phi(q)}=a \cdot\left(a^{\phi(p)}\right)^{u \phi(q)} \equiv a \cdot 1^{u \phi(q)} \equiv a(\bmod p)
$$

Similarly, $b^{e d} \equiv b(\bmod q)$.

Attacks on RSA

The security of RSA depends on the computational difficulty of several different problems, corresponding to different ways that Eve might attempt to break the system.

- Factoring n
- Computing $\phi(n)$
- Finding d directly
- Finding plaintext

We examine each in turn and look at their relative computational difficulty.

RSA factoring problem

Definition (RSA factoring problem)

Given a number n that is known to be the product of two primes p and q, find p and q.

Clearly, if Eve can find p and q, then she can compute the decryption key d from the public encryption key (e, n) (in the same way that Alice did when generating the key).

This completely breaks the system, for now Eve has the same power as Bob to decrypt all ciphertexts.

This problem is a special case of the general factoring problem. It is believed to be intractable, although it is not known to be NP-complete.

$\phi(n)$ problem

Definition ($\phi(n)$ problem)

Given a number n that is known to be the product of two primes p and q, compute $\phi(n)$.

Eve doesn't really need to know the factors of n in order to break RSA. It is enough for her to know $\phi(n)$, since that allows her to compute $d=e^{-1}(\bmod \phi(n))$.

Computing $\phi(n)$ is no easier than factoring n. Given n and $\phi(n)$, Eve can factor n by solving the system of quadratic equations

$$
\begin{aligned}
n & =p q \\
\phi(n) & =(p-1)(q-1)
\end{aligned}
$$

for p and q using standard methods of algebra.

Decryption exponent problem

Definition (Decryption exponent problem)

Given an RSA public key (e, n), find the decryption exponent d.
Eve might somehow be able to find d directly from e and n even without the ability to factor n or to compute $\phi(n)$.

That would represent yet another attack that couldn't be ruled out by the assumption that the RSA factoring problem is hard. However, that too is not possible, as we now show.

Factoring n knowing e and d

We begin by finding unique integers s and t such that

$$
2^{s} t=e d-1
$$

and t is odd.
This is always possible since ed $-1 \neq 0$.
Express ed - 1 in binary. Then s is the number of trailing zeros and t is the value of the binary number that remains after the trailing zeros are removed.

Since ed $-1 \equiv 0(\bmod \phi(n))$ and $4 \mid \phi(n)$ (since both $p-1$ and $q-1$ are even), it follows that $s \geq 2$.

Square roots of $1(\bmod n)$

Over the reals, each positive number has two square roots, one positive and one negative, and no negative numbers have real square roots.

Over \mathbf{Z}_{n}^{*} for $n=p q, 1 / 4$ of the numbers have square roots, and each number that has a square root actually has four.

Since 1 does have a square root modulo n (itself), there are four possibilities for b :

$$
\pm 1 \bmod n \quad \text { and } \quad \pm r \bmod n
$$

for some $r \in \mathbf{Z}_{n}^{*}, r \not \equiv \pm 1(\bmod n)$.

Finding a square root of $1(\bmod n)$

Using randomization to find a square root of $1(\bmod n)$.

- Choose random $a \in \mathbf{Z}_{n}^{*}$.
- Define a sequence $b_{0}, b_{1}, \ldots, b_{s}$, where $b_{i}=a^{2^{i} t} \bmod n$, $0 \leq i \leq s$.
- Each number in the sequence is the square of the number preceding it $(\bmod n)$.
- The last number in the sequence is $b_{s}=a^{e d-1} \bmod n$.
- Since ed $\equiv 1(\bmod \phi(n))$, it follows using Euler's theorem that $b_{s} \equiv 1(\bmod n)$.
- Since $1^{2} \bmod n=1$, every element of the sequence following the first 1 is also 1 .
Hence, the sequence consists of a (possibly empty) block of non-1 elements, following by a block of one or more 1's.

Using a non-trivial square root of unity to factor n

Suppose $b^{2} \equiv 1(\bmod n)$. Then $n \mid\left(b^{2}-1\right)=(b+1)(b-1)$.
Suppose further that $b \not \equiv \pm 1(\bmod n)$. Then $n \nmid(b+1)$ and $n \nmid(b-1)$.

Therefore, one of the factors of n divides $b+1$ and the other divides $b-1$.

Hence, $p=\operatorname{gcd}(b-1, n)$ is a non-trivial factor of n.
The other factor is $q=n / p$.

Randomized factoring algorithm knowing d

Factor $(n, e, d)\left\{/ /\right.$ finds s, t such that $e d-1=2^{s} t$ and t is odd $s=0 ; t=e d-1 ;$ while (t is even) $\{s++; t /=2 ;\}$
// Search for non-trivial square root of $1(\bmod n)$ do \{
$/ /$ Find a random square root b of $1(\bmod n)$ choose $a \in \mathbf{Z}_{n}^{*}$ at random; $b=a^{t} \bmod n$; while $\left(b^{2} \not \equiv 1(\bmod n)\right) b=b^{2} \bmod n$;
$\}$ while $(b \equiv \pm 1(\bmod n))$;
// Factor n
$p=\operatorname{gcd}(b-1, n)$;
$q=n / p ;$
return (p, q);

Notes on the algorithm

Notes:

- b_{0} is the value of b when the innermost while loop is first entered, and b_{k} is the value of b after the $k^{\text {th }}$ iteration.
- The inner loop executes at most $s-1$ times since it terminates just before the first 1 is encountered, that is, when $b^{2} \equiv 1(\bmod n)$.
- At that time, $b=b_{k}$ is a square root of $1(\bmod n)$.
- The outer do loop terminates if and only if $b \not \equiv \pm 1(\bmod n)$. At that point we can factor n.
The probability that $b \not \equiv \pm 1(\bmod n)$ for a randomly chosen $a \in \mathbf{Z}_{n}^{*}$ is at least 0.5. ${ }^{4}$ Hence, the expected number of iterations of the do loop is at most 2.

[^2]
Example

Suppose $n=55, e=3$, and $d=27 .{ }^{5}$
Then ed $-1=80=(1010000)_{2}$, so $s=4$ and $t=5$.
Now, suppose we choose $a=2$. We compute the sequence of b 's.

$$
\begin{aligned}
& b_{0}=a^{t} \bmod n=2^{5} \bmod 55=32 \\
& b_{1}=\left(b_{0}\right)^{2} \bmod n=(32)^{2} \bmod 55=1024 \bmod 55=34 \\
& b_{2}=\left(b_{1}\right)^{2} \bmod n=(34)^{2} \bmod 55=1156 \bmod 55=1 \\
& b_{3}=\left(b_{2}\right)^{2} \bmod n=(1)^{2} \bmod 55=1 \\
& b_{4}=\left(b_{3}\right)^{2} \bmod n=(1)^{2} \bmod 55=1
\end{aligned}
$$

The last $b_{i} \neq 1$ in this sequence is $b_{1}=34 \not \equiv-1(\bmod 55)$, so 34 is a non-trivial square root of 1 modulo 55 .

It follows that $\operatorname{gcd}(34-1,55)=11$ is a prime divisor of n.
${ }^{5}$ These are possible RSA values since $n=5 \times 11, \phi(n)=4 \times 10=40$, and $e d=81 \equiv 1(\bmod 40)$.

Known ciphertext attack against RSA

Eve isn't really interested in factoring n, computing $\phi(n)$, or finding d, except as a means to read Alice's secret messages.

The problem we would like to be hard is

Definition (Known ciphertext problem)

Given an RSA public key (n, e) and a ciphertext c, find the plaintext message m.

Hardness of known ciphertext attack

A known ciphertext attack on RSA is no harder than factoring n, computing $\phi(n)$, or finding d, but it does not rule out the possibility of some clever way of decrypting messages without actually finding the decryption key.

Perhaps there is some feasible probabilistic algorithm that finds m with non-negligible probability, maybe not even for all ciphertexts c but for some non-negligible fraction of them.

Such a method would "break" RSA and render it useless in practice.

No such algorithm has been found, but neither has the possibility been ruled out, even under the assumption that the factoring problem itself is hard.

[^0]: ${ }^{1}$ Carmichael numbers are sometimes called Fermat pseudoprimes.
 ${ }^{2}$ See http://en.wikipedia.org/wiki/Carmichael_number for further information.

[^1]: ${ }^{3} \mathrm{~A}$ surjection is an onto function.

[^2]: ${ }^{4}$ (See Evangelos Kranakis, Primality and Cryptography, Theorem 5.1 for details.)

