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Weak tests

Recall: A weak test of compositeness T (n, a) is only required to
have many witnesses to the correct answer when n is composite.

When n is prime, a weak test always answers ‘?’, so there are no
witnesses to n being prime.

Hence, the test either outputs ‘composite’ or ‘?’ but never
‘prime’.

An answer of ‘composite’ means that n is definitely composite,
but these tests can never say for sure that n is prime.
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Use of a weak test of compositeness

Let T (n, a) be a weak test of compositeness. Algorithm P2 is a
“best effort” attempt to prove that n is composite.

Since T is a weak test, we can slightly simplify P2.

Algorithm P2(n, t):
repeat t times {

Generate a random helper string a;
if (T (n, a) = ‘composite’) return ‘composite’;

}
return ‘?’;

P2 returns ‘composite’ just in case it succeeds in finding a helper
string a for which the test succeeds.

Such a string a is a witness to the compositeness of n.
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Finding a random prime

P2 is used in generating a random prime.

Algorithm GenPrime(k):
const int t=20;
do {

Generate a random k-bit integer x ;
} while ( P2(x , t) == ‘composite’ );
return x ;

The number x that GenPrime() returns has the property that P2

failed to find a witness to its compositeness after t trials, but there
is still the possibility that x is composite.
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Boolean test of compositeness

A Boolean function τ(n, a) can be interpreted as a weak test of
compositeness by taking true to mean ‘composite’ and false to
mean ‘?’.

We may write τa(n) to mean τ(n, a).

If τa(n) = true, we say that τa succeeds on n, and a is a
witness to the compositeness of n.

If τa(n) = false, then τa fails and gives no information about
the compositeness of n.

Clearly, if n is prime, then τa fails on n for all a, but if n is
composite, then τa may succeed for some values of a and fail for
others.
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Useful tests

A test of compositeness τ is useful if

there is a feasible algorithm that computes τ(n, a);

for every composite number n, τa(n) succeeds for a fraction
c > 0 of the help strings a.

Suppose for simplicity that c = 1/2 and one computes τa(n) for
100 randomly-chosen values for a.

If any of the τa succeeds, we have a proof a that n is
composite.

If all fail, we don’t know whether or not n is prime or
composite. But we do know that if n is composite, the
probability that all 100 tests will fail is only 1/2100.
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Application to RSA

In practice, we use GenPrime(k) to choose RSA primes p and q,
where the constant t is set according to the number of witnesses
and the confidence levels we would like to achieve.

For c = 1/2, using t = 20 trials gives us a failure probability of
about one in a million (for each of p and q), or about two in a
million of generating a bad RSA modulus. t can be increased if
this risk of failure is deemed to be too large.
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Finding weak tests of compositeness

We still need to find useful weak tests of compositeness.

We begin with two simple examples. While neither is useful, they
illustrate some of the ideas behind the useful tests that we will
present later.
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The division test δa(n)

Let
δa(n) = (2 ≤ a ≤ n − 1 and a|n).

Test δa succeeds on n iff a is a proper divisor of n, which indeed
implies that n is composite. Thus, {δa}a∈Z is a valid test of
compositeness.

Unfortunately, it isn’t useful since the fraction of witnesses to n’s
compositeness is exponentially small.

For example, if n = pq for p, q prime, then the only witnesses are
p and q, and the only tests that succeed are δp and δq.
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The Fermat test ζa(n)

Let
ζa(n) = (2 ≤ a ≤ n − 1 and an−1 6≡ 1 (mod n)).

By Fermat’s theorem, if n is prime and gcd(a, n) = 1, then
an−1 ≡ 1 (mod n).

Hence, if ζa(n) succeeds, it must be the case that n is not prime.

This shows that {ζa}a∈Z is a valid test of compositeness.

For this test to be useful, we would need to know that every
composite number n has a constant fraction of witnesses.
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Carmichael numbers (Fermat pseudoprimes)

Unfortunately, there are certain composite numbers n called
Carmichael numbers1 for which there are no witnesses, and all of
the tests ζa fail. Such n are fairly rare, but they do exist. The
smallest such n is 561 = 3 · 11 · 17. 2

Hence, Fermat tests are not useful tests of compositeness
according to our definition, and they are unable to distinguish
Carmichael numbers from primes.

We defer discussion of weak tests that are both valid and useful
until we have developed some more needed number theory.

1Carmichael numbers are sometimes called Fermat pseudoprimes.
2See http://en.wikipedia.org/wiki/Carmichael number for further

information.
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Systems of congruence equations

Theorem (Chinese remainder theorem)

Let n1, n2, . . . , nk be positive pairwise relatively-prime integersa, let
n =

∏k
i=1 ni , and let ai ∈ Zni for i = 1, . . . , k. Consider the system

of congruence equations with unknown x:

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ ak (mod nk)

(1)

(1) has a unique solution x ∈ Zn.

aThis means that gcd(ni , nj) = 1 for all 1 ≤ i < j ≤ k.
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How to solve congruence equations

To solve for x , let

Ni = n/ni = n1n2 . . . ni−1︸ ︷︷ ︸ · ni+1 . . . nk︸ ︷︷ ︸,
and compute Mi = N−1

i mod ni , for 1 ≤ i ≤ k .

N−1
i (mod ni ) exists since gcd(Ni , ni ) = 1. (Why?)

We can compute N−1
i by solving the associated Diophantine

equation as described in Lecture 10.

The solution to (1) is

x = (
k∑

i=1

aiMiNi ) mod n (2)
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Correctness

Lemma

MjNj ≡
{

1 (mod ni ) if j = i ;
0 (mod ni ) if j 6= i .

Proof.

MiNi ≡ 1 (mod ni ) since Mi = N−1
i mod ni .

If j 6= i , then MjNj ≡ 0 (mod ni ) since ni |Nj .

It follows from the lemma and the fact that ni |n that

x ≡
k∑

i=1

aiMiNi ≡ ai (mod ni ) (3)

for all 1 ≤ i ≤ k , establishing that (2) is a solution of (1).
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Uniqueness

To see that the solution is unique in Zn, let
χ : Zn → Zn1 × . . .× Znk

be the mapping

x 7→ (x mod n1, . . . , x mod nk).

χ is a surjection3 since χ(x) = (a1, . . . , ak) iff x satisfies (1).

Since also |Zn| = |Zn1 × . . .× Znk
|, χ is a bijection, and there is

only one solution to (1) in Zn.

3A surjection is an onto function.
Michael J. Fischer CPSC 467b, Lecture 11 16/36



Outline Primality tests Chinese remainder RSA Security Homomorphic property RSA works

An alternative proof of uniqueness

A less slick but more direct way of seeing uniqueness is to suppose
that x = u and x = v are both solutions to (1).

Then u ≡ v (mod ni ), so ni |(u − v) for all i .

By the pairwise relatively prime condition on the ni , it follows that
n|(u − v), so u ≡ v (mod n). Hence, the solution is unique in Zn.
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Operations on tuples

The bijection χ establishes a one-to-one correspondence between
members of Zn and k-tuples (a1, . . . , ak) in Zn1 × . . .× Znk

.
This lets us reason about and compute with k-tuples and then
translate the results back to Zn.

The homomorphic property of χ means that performing an
arithmetic operation on x ∈ Zn corresponds to performing the
corresponding operation on each of the components of χ(x).

Let � ∈ {+,−,×}, χ(x) = (a1, . . . , ak), χ(y) = (b1, . . . , bk).
Then

χ((x � y) mod n)

= ((a1 � b1) mod n1, . . . , (ak � bk) mod nk). (4)

This follows because ni |n, so

((x � y) mod n) mod ni = (ai � bi ) mod ni .
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Example

Let n1 = 4, n2 = 3, n3 = 7, so n = 84.

χ(15) = (3, 0, 1)

χ(23) = (3, 2, 2)

χ((15× 23) mod n) = χ(345 mod 84) = χ(9)

= (9 mod 4, 9 mod 3, 9 mod 7) = (1, 0, 2)

. Check:
((3× 3) mod 4 = (9 mod 4) = 1

((0× 2) mod 3 = (0 mod 3) = 0

((1× 2) mod 7 = (2 mod 7) = 2.
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An application of the Chinese Remainder Theorem

We showed previously that RSA decryption works when m, c ∈ Z∗n
but omitted the proof that it actually works for all m, c ∈ Zn. We
use the Chinese Remainder Theorem to supply this missing piece.

Theorem (RSA encryption is invertible over all of Zn)

Let n = pq be an RSA modulus, p, q distinct primes, and let e and
d be the RSA encryption and decryption exponents, respectively.
Then med ≡ m (mod n) for all m ∈ Zn.
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Proof

Define a = (m mod p) and b = (m mod q), so

m ≡ a (mod p)
m ≡ b (mod q)

(5)

Raising both sides to the power ed gives

med ≡ aed (mod p)
med ≡ bed (mod q)

(6)

We will show that
aed ≡ a (mod p)
bed ≡ b (mod q)

(7)

Combining (6) with (7) yields

med ≡ a (mod p)
med ≡ b (mod q)

(8)
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Proof (cont.)

From (5) and (8), we see that both m and med are solutions to the
system of equations

x ≡ a (mod p)
x ≡ b (mod q)

(9)

By the Chinese Remainder Theorem, the solution to (9) is unique
modulo n, so med ≡ m (mod n) as desired.

It remains to show
aed ≡ a (mod p)
bed ≡ b (mod q)

(7)
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Proof (cont.)

We first argue that aed ≡ a (mod p).

If a ≡ 0 (mod p), then obviously aed ≡ 0 ≡ a (mod p).

If a 6≡ 0 (mod p), then gcd(a, p) = 1 since p is prime, so a ∈ Z∗p.

By Euler’s theorem, aφ(p) ≡ 1 (mod p).
Since ed ≡ 1 (mod φ(n)), we have

ed = 1 + uφ(n) = 1 + uφ(p)φ(q)

for some integer u. Hence,

aed = a1+uφ(p)φ(q) = a ·
(
aφ(p)

)uφ(q)
≡ a · 1uφ(q) ≡ a (mod p)

Similarly, bed ≡ b (mod q).
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Attacks on RSA

The security of RSA depends on the computational difficulty of
several different problems, corresponding to different ways that Eve
might attempt to break the system.

Factoring n

Computing φ(n)

Finding d directly

Finding plaintext

We examine each in turn and look at their relative computational
difficulty.
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RSA factoring problem

Definition (RSA factoring problem)

Given a number n that is known to be the product of two primes p
and q, find p and q.

Clearly, if Eve can find p and q, then she can compute the
decryption key d from the public encryption key (e, n) (in the same
way that Alice did when generating the key).

This completely breaks the system, for now Eve has the same
power as Bob to decrypt all ciphertexts.

This problem is a special case of the general factoring problem.
It is believed to be intractable, although it is not known to be
NP-complete.
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φ(n) problem

Definition (φ(n) problem)

Given a number n that is known to be the product of two primes p
and q, compute φ(n).

Eve doesn’t really need to know the factors of n in order to break
RSA. It is enough for her to know φ(n), since that allows her to
compute d = e−1 (mod φ(n)).

Computing φ(n) is no easier than factoring n. Given n and φ(n),
Eve can factor n by solving the system of quadratic equations

n = pq

φ(n) = (p − 1)(q − 1)

for p and q using standard methods of algebra.
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Decryption exponent problem

Definition (Decryption exponent problem)

Given an RSA public key (e, n), find the decryption exponent d .

Eve might somehow be able to find d directly from e and n even
without the ability to factor n or to compute φ(n).

That would represent yet another attack that couldn’t be ruled out
by the assumption that the RSA factoring problem is hard.
However, that too is not possible, as we now show.
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Factoring n knowing e and d

We begin by finding unique integers s and t such that

2st = ed − 1

and t is odd.

This is always possible since ed − 1 6= 0.

Express ed − 1 in binary. Then s is the number of trailing zeros
and t is the value of the binary number that remains after the
trailing zeros are removed.

Since ed − 1 ≡ 0 (mod φ(n)) and 4 |φ(n) (since both p − 1 and
q − 1 are even), it follows that s ≥ 2.
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Square roots of 1 (mod n)

Over the reals, each positive number has two square roots, one
positive and one negative, and no negative numbers have real
square roots.

Over Z∗n for n = pq, 1/4 of the numbers have square roots, and
each number that has a square root actually has four.

Since 1 does have a square root modulo n (itself), there are four
possibilities for b:

±1 mod n and ± r mod n

for some r ∈ Z∗n, r 6≡ ±1 (mod n).
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Finding a square root of 1 (mod n)

Using randomization to find a square root of 1 (mod n).

Choose random a ∈ Z∗n.

Define a sequence b0, b1, . . . , bs , where bi = a2i t mod n,
0 ≤ i ≤ s.

Each number in the sequence is the square of the number
preceding it (mod n).

The last number in the sequence is bs = aed−1 mod n.

Since ed ≡ 1 (mod φ(n)), it follows using Euler’s theorem
that bs ≡ 1 (mod n).

Since 12 mod n = 1, every element of the sequence following
the first 1 is also 1.

Hence, the sequence consists of a (possibly empty) block of non-1
elements, following by a block of one or more 1’s.
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Using a non-trivial square root of unity to factor n

Suppose b2 ≡ 1 (mod n). Then n |(b2 − 1) = (b + 1)(b − 1).

Suppose further that b 6≡ ±1 (mod n). Then n ∼| (b + 1) and
n ∼| (b − 1).

Therefore, one of the factors of n divides b + 1 and the other
divides b − 1.

Hence, p = gcd(b − 1, n) is a non-trivial factor of n.
The other factor is q = n/p.
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Randomized factoring algorithm knowing d

Factor (n, e, d) { //finds s, t such that ed − 1 = 2st and t is odd
s = 0; t = ed − 1;
while (t is even ) {s++; t/=2; }
// Search for non-trivial square root of 1 (mod n)
do {

// Find a random square root b of 1 (mod n)
choose a ∈ Z∗

n at random;
b = at mod n;
while (b2 6≡ 1 (mod n)) b = b2 mod n;

} while (b ≡ ±1 (mod n));

// Factor n
p = gcd(b − 1, n);
q = n/p;
return (p, q);

}
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Notes on the algorithm

Notes:

b0 is the value of b when the innermost while loop is first
entered, and bk is the value of b after the kth iteration.

The inner loop executes at most s − 1 times since it
terminates just before the first 1 is encountered, that is, when
b2 ≡ 1 (mod n).

At that time, b = bk is a square root of 1 (mod n).

The outer do loop terminates if and only if b 6≡ ±1 (mod n).
At that point we can factor n.

The probability that b 6≡ ±1 (mod n) for a randomly chosen
a ∈ Z∗n is at least 0.5.4 Hence, the expected number of iterations
of the do loop is at most 2.

4(See Evangelos Kranakis, Primality and Cryptography, Theorem 5.1 for
details.)
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Example

Suppose n = 55, e = 3, and d = 27.5

Then ed − 1 = 80 = (1010000)2, so s = 4 and t = 5.

Now, suppose we choose a = 2. We compute the sequence of b’s.

b0 = at mod n = 25 mod 55 = 32
b1 = (b0)2 mod n = (32)2 mod 55 = 1024 mod 55 = 34
b2 = (b1)2 mod n = (34)2 mod 55 = 1156 mod 55 = 1
b3 = (b2)2 mod n = (1)2 mod 55 = 1
b4 = (b3)2 mod n = (1)2 mod 55 = 1

The last bi 6= 1 in this sequence is b1 = 34 6≡ −1 (mod 55), so 34
is a non-trivial square root of 1 modulo 55.

It follows that gcd(34− 1, 55) = 11 is a prime divisor of n.

5These are possible RSA values since n = 5× 11, φ(n) = 4× 10 = 40, and
ed = 81 ≡ 1 (mod 40).
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Known ciphertext attack against RSA

Eve isn’t really interested in factoring n, computing φ(n), or
finding d , except as a means to read Alice’s secret messages.

The problem we would like to be hard is

Definition (Known ciphertext problem)

Given an RSA public key (n, e) and a ciphertext c , find the
plaintext message m.
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Hardness of known ciphertext attack

A known ciphertext attack on RSA is no harder than factoring n,
computing φ(n), or finding d , but it does not rule out the
possibility of some clever way of decrypting messages without
actually finding the decryption key.

Perhaps there is some feasible probabilistic algorithm that finds m
with non-negligible probability, maybe not even for all ciphertexts c
but for some non-negligible fraction of them.

Such a method would “break” RSA and render it useless in
practice.

No such algorithm has been found, but neither has the possibility
been ruled out, even under the assumption that the factoring
problem itself is hard.
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