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Quadratic residues modulo n

An integer b is said to be a square root modulo n of an integer a if

b2 ≡ a (mod n).

a is called a quadratic residue (or perfect square) modulo n if has a
square root modulo n.
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Quadratic residues in Z∗n

If a, b ∈ Zn and b2 ≡ a (mod n), then

b ∈ Z∗
n iff a ∈ Z∗

n.

Why?

Because

gcd(b, n) = 1 iff gcd(a, n) = 1

This follows from the fact that b2 = a + un for some u, so if p is a
prime divisor of n, then

p |b iff p |a.

Henceforth, we will generally assume that all quadratic residues
and square roots under discussion are in Z∗

n.
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QRn and QNRn

We partition Z∗
n into two parts.

QRn = {a ∈ Z∗
n | a is a quadratic residue modulo n}.

QNRn = Z∗
n −QRn.

QRn is the set of quadratic residues modulo n.

QNRn is the set of quadratic non-residues modulo n.

For a ∈ QRn, we sometimes write

√
a = {b ∈ Z∗

n | b2 ≡ a (mod n)},

the set of square roots of a modulo n.

Michael J. Fischer CPSC 467b, Lecture 13 5/26



Outline Quadratic Residues Finding sqrt QR crypto Sqrt mod p Sqrt mod pq Euler Criterion

Quadratic residues in Z∗15

The following table shows all elements of
Z∗

15 = {1, 2, 4, 7, 8, 11, 13, 14} and their squares.

a a2 mod 15

1 1
2 4
4 1
7 4

8 = −7 4
11 = −4 1
13 = −2 4
14 = −1 1

Thus, QR15 = {1, 4} and QNR15 = {2, 7, 8, 11, 13, 14}.
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Quadratic residues modulo a prime

We next look at the case where n = p is an odd prime.

Fact

For an odd prime p, every a ∈ QRp has exactly two square roots in
Z∗

p, and exactly 1/2 of the elements of Z∗
p are quadratic residues.

In other words, if a ∈ QRp

1 |
√

a| = 2.

2 |QRn| = |Z∗
p|/2.
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Quadratic residues in Z∗11

The following table shows all elements b ∈ Z∗
11 and their squares.

b b2 mod 11

1 1
2 4
3 9
4 5
5 3

b −b b2 mod 11

6 −5 3
7 −4 5
8 −3 9
9 −2 4

10 −1 1

Thus, QR11 = {1, 3, 4, 5, 9} and QNR11 = {2, 6, 7, 8, 10}.
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Proof that |
√

a| = 2 modulo a prime

We show that |
√

a| = 2 for a ∈ QRp.

Let a ∈ QRp. It must have a square root b ∈ Z∗
p.

Consider −b ∈ Zp. −b ∈
√

a since (−b)2 ≡ b2 ≡ a (mod p).

Moreover, b 6≡ −b (mod p) since p ∼| 2b.

Hence, b and −b are distinct elements of
√

a, so |
√

a| ≥ 2.

Now suppose c ∈
√

a. Then c2 ≡ a ≡ b2 (mod p).

Hence, p |c2 − b2, so p |(c − b)(c + b).

Since p is prime, then either p |(c − b) or p |(c + b) (or both).

If p |(c − b), then c ≡ b (mod p).

If p |(c + b), then c ≡ −b (mod p).

Hence, c = ±b, so
√

a = {b,−b}, and |
√

a| = 2.

Finally, since each b ∈ Z∗
p is the square root of exactly one

element of QRp, it must be that |QRp| = 1
2 |Z

∗
p| as desired.
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Quadratic residues modulo pq

We now turn to the case where n = pq is the product of distinct
odd primes.

Fact

Let n = pq for p, q distinct odd primes. Then every a ∈ QRn has
exactly four square roots in Z∗

n, and exactly 1/4 of the elements of
Z∗

n are quadratic residues.

In other words, if a ∈ QRn

1 |
√

a| = 4.

2 |QRn| = |Z∗
n|/4.
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Proof that |
√

a| = 4 modulo pq

We show that |
√

a| = 4 for a ∈ QRn.

Let a ∈ QRn. Then b2 ≡ a (mod n) for some b ∈ Z∗
n,

Then b2 ≡ a (mod p) and b2 ≡ a (mod q).

Therefore, b is a square root of a modulo both p and q.

Conversely, if bp ∈
√

a (mod p) and bq ∈
√

a (mod q), then
by the Chinese Remainder theorem, the unique number
b ∈ Z∗

n such that b ≡ bp (mod p) and b ≡ bq (mod q) is a
square root of a (mod n).

Since a has two square roots mod p and two square roots
mod q, it follows by the Chinese remainder theorem that a
has four distinct square roots mod n.

Finally, since each b ∈ Z∗
n is the square root of exactly one

element of QRn, it must be that |QRn| = 1
4 |Z

∗
n| as desired.
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Testing for membership in QRp

Theorem (Euler Criterion)

An integer a is a non-triviala quadratic residue modulo a prime p iff

a(p−1)/2 ≡ 1 (mod p).

aA non-trivial quadratic residue is one that is not equivalent to 0 (mod p).

Proof in forward direction.

Let a ≡ b2 (mod p) for some b 6≡ 0 (mod p). Then

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 (mod p)

by Euler’s theorem, as desired.
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Proof of Euler Criterion

Proof in reverse direction.

Suppose a(p−1)/2 ≡ 1 (mod p). Clearly a 6≡ 0 (mod p). We find a
square root b of a modulo p.

Let g be a primitive root of p. Choose k so that a ≡ gk (mod p),
and let ` = (p − 1)k/2. Then

g ` ≡ g (p−1)k/2 ≡ (gk)(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p).

Since g is a primitive root, (p − 1) |`. Hence, 2|k and k/2 is an
integer.

Let b = gk/2. Then b2 ≡ gk ≡ a (mod p), so b is a non-trivial
square root of a modulo p, as desired.
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Finding square roots modulo prime p ≡ 3 (mod 4)

The Euler criterion lets us test membership in QRp for prime p,
but it doesn’t tell us how to find square roots. They are easily
found in the special case when p ≡ 3 (mod 4).

Theorem

Let p ≡ 3 (mod 4), a ∈ QRp. Then b = a(p+1)/4 is a square root
of a (mod p).

Proof.

p + 1 is divisible by 4, so (p + 1)/4 is an integer. Then

b2 ≡ (a(p+1)/4)2 ≡ a(p+1)/2 ≡ a1+(p−1)/2 ≡ a · 1 ≡ a (mod p)

by the Euler Criterion.
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Finding square roots for general primes

We now present an algorithm due to D. Shanks1 that finds square
roots of quadratic residues modulo any odd prime p.

It bears a strong resemblance to the algorithm presented in lecture
11 for factoring the RSA modulus given both the encryption and
decryption exponents.

Let p be an odd prime. Write φ(p) = p − 1 = 2st, where t is odd.
(Recall: s is # trailing 0’s in the binary expansion of p − 1.)

Because p is odd, p − 1 is even, so s ≥ 1.

1Shanks’s algorithm appeared in his paper, “Five number-theoretic
algorithms”, in Proceedings of the Second Manitoba Conference on Numerical
Mathematics, Congressus Numerantium, No. VII, 1973, 51–70. Our treatment
is taken from the paper by Jan-Christoph Schlage-Puchta”, “On Shank’s
Algorithm for Modular Square Roots”, Applied Mathematics E-Notes, 5
(2005), 84–88.
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A special case

In the special case when s = 1, then p − 1 = 2t, so p = 2t + 1.

Writing the odd number t as 2`+ 1 for some integer `, we have

p = 2(2`+ 1) + 1 = 4`+ 3,

so p ≡ 3 (mod 4).

This is exactly the case that we handled above.
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Overall structure of Shank’s algorithm

Let p − 1 = 2st be as above, where p is an odd prime.

Assume a ∈ QRp is a quadratic residue and u ∈ QNRp is a
quadratic non-residue.

We can easily find u by choosing random elements of Z∗
p and

applying the Euler Criterion.

The goal is to find x such that x2 ≡ a (mod p).
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Shanks’s algorithm

1. Let s, t satisfy p − 1 = 2st and t odd.
2. Let u ∈ QNRp.
3. k = s
4. z = ut mod p
5. x = a(t+1)/2 mod p
6. b = at mod p
7. while (b 6≡ 1 (mod p)) {
8. let m be the least integer with b2m ≡ 1 (mod p)

9. t = z2k−m−1

mod p
10. z = t2 mod p
11. b = bz mod p
12. x = xt mod p
13. k = m
14. }
15. return x

Figure: Shank’s algorithm for finding a square root of a (mod n).
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Loop invariant

The congruence
x2 ≡ ab (mod p)

is easily shown to be a loop invariant.

It’s clearly true initially since x2 ≡ at+1 and b ≡ at (mod p).

Each time through the loop, a is unchanged, b gets multiplied by
t2 (lines 10 and 11), and x gets multiplied by t (line 12); hence
the invariant remains true regardless of the value of t.

If the program terminates, we have b ≡ 1 (mod p), so x2 ≡ a, and
x is a square root of a (mod p).
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Termination proof

The algorithm terminates after at most s iterations of the loop.

To see why, we look at the orders2 of b and z (mod p) at the start
of each loop iteration (before line 8) and show that
ord(b) < ord(z) = 2k .

On the first iteration, k = s, and z ≡ ut (mod p). We argue that
ord(z) = 2s . Clearly

z2s ≡ u2s t ≡ up−1 ≡ 1 (mod p),

so ord(z) |2s . By the Euler Criterion, since u is a non-residue, we
have

z2s−1 ≡ u2s−1t ≡ u(p−1)/2 6≡ 1 (mod p).

Hence, ord(z) = 2s .
2Recall that the order of an element g modulo p is the least integer k such

that g k ≡ 1 (mod p).
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Termination proof (cont.)

Still on the first iteration, b = at (mod p) and k = s.

Since a is a quadratic residue,

b2s−1 ≡ a2s−1t ≡ a(p−1)/2 ≡ 1 (mod p),

by the Euler Criterion. Hence, ord(b) |2s−1.

It follows that ord(b) ≤ 2s−1 < 2s .
Since ord(z) = 2s , we have ord(b) < ord(z) = 2s = 2k .
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Termination proof (cont.)

Now, on each iteration, line 8 sets m = ord(b) and line 9 sets

t = z2k−m−1
mod p, so

ord(t) =
ord(z)

2k−m−1
=

2k

2k−m−1
= 2m+1.

Line 10 sets z = t2, so ord(z) = ord(t)/2 = 2m.

After line 11, ord(b) < 2m. This because the old value of b and the
new value of z both have order 2m. Hence, both of those numbers
raised to the power 2m−1 are −1 (mod p), so their product (the
new value of b) raised to that same power is (−1)2 ≡ 1.

Line 13 sets k = m in preparation for the next iteration, and the
loop invariant ord(b) < ord(z) = 2k is maintained. Moreover,
ord(b) is reduced at each iteration, so the loop must terminate
after at most s iterations.
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Quadratic residues modulo n = pq

Let n = pq, p, q distinct odd primes.

We divide the numbers in Z∗
n into four classes depending on their

membership in QRp and QRq.3

Let Q11
n = {a ∈ Z∗

n | a ∈ QRp ∩QRq}.
Let Q10

n = {a ∈ Z∗
n | a ∈ QRp ∩QNRq}.

Let Q01
n = {a ∈ Z∗

n | a ∈ QNRp ∩QRq}.
Let Q00

n = {a ∈ Z∗
n | a ∈ QNRp ∩QNRq}.

Under these definitions,

QRn = Q11
n

QNRn = Q00
n ∪ Q01

n ∪ Q10
n

3To be strictly formal, we classify a ∈ Z∗n according to whether or not
(a mod p) ∈ QRp and whether or not (a mod q) ∈ QRq.
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Quadratic residuosity problem

Definition (Quadratic residuosity problem)

The quadratic residuosity problem is to decide, given
a ∈ Q00

n ∪ Q11
n , whether or not a ∈ QRn.

Fact

There is no known feasible algorithm for solving the quadratic
residuosity problem that gives the correct answer significantly more
than 1/2 the time for uniformly distributed random a ∈ Q00

n ∪Q11
n .
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Goldwasser-Micali probabilistic cryptosystem

The Goldwasser-Micali cryptosystem is based on the assumed
hardness of the quadratic residuosity problem.

The public key consist of a pair e = (n, y), where n = pq for
distinct odd primes p, q, and y ∈ Q00

n .
The private key consists of p.
The message space is M = {0, 1}. (Single bits!)

To encrypt m ∈M, Alice chooses a random a ∈ QRn.
She does this by choosing a random member of Z∗

n and squaring it.

If m = 0, then c = a mod n ∈ Q11
n .

If m = 1, then c = ay mod n ∈ Q00
n .

Hence, the problem of finding m given c is equivalent to the
problem of testing if c ∈ QRn, given that c ∈ Q00

n ∪ Q11
n .
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Decryption in Goldwasser-Micali encryption

Bob, knowing the private key p, can use the Euler Criterion to
quickly determine whether or not c ∈ QRp and hence whether
c ∈ Q11

n or c ∈ Q00
n , thereby determining m.

Eve’s problem of determining whether c encrypts 0 or 1 is the
same as the problem of distinguishing between membership in Q00

n

and Q11
n , which is just the quadratic residuosity problem, assuming

the ciphertexts are uniformly distributed.

One can show that every element of Q11
n is equally likely to be

chosen as the ciphertext c in case m = 0, and every element of
Q00

n is equally likely to be chosen as the ciphertext c in case
m = 1. If the messages are also uniformly distributed, then any
element of Q00

n ∪ Q11
n is equally likely to be the ciphertext.
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