CPSC 467b: Cryptography and Computer Security Lecture 13

Michael J. Fischer
Department of Computer Science Yale University

February 22, 2010
(1) Quadratic Residues, Squares, and Square Roots

- Square Roots Modulo a Prime
- Square Roots Modulo the Product of Two Primes
- Euler Criterion
(2) Finding Square Roots
- Square Roots Modulo Special Primes
- Square Roots Modulo General Odd Primes
(3) QR Probabilistic Cryptosystem

Quadratic residues modulo n

An integer b is said to be a square root modulo n of an integer a if

$$
b^{2} \equiv a(\bmod n)
$$

a is called a quadratic residue (or perfect square) modulo n if has a square root modulo n.

Quadratic residues in \mathbf{Z}_{n}^{*}

If $a, b \in \mathbf{Z}_{n}$ and $b^{2} \equiv a(\bmod n)$, then

$$
b \in \mathbf{Z}_{n}^{*} \text { iff } a \in \mathbf{Z}_{n}^{*} .
$$

Why?

Quadratic residues in \mathbf{Z}_{n}^{*}

If $a, b \in \mathbf{Z}_{n}$ and $b^{2} \equiv a(\bmod n)$, then

$$
b \in \mathbf{Z}_{n}^{*} \text { iff } a \in \mathbf{Z}_{n}^{*} .
$$

Why? Because

$$
\operatorname{gcd}(b, n)=1 \text { iff } \operatorname{gcd}(a, n)=1
$$

This follows from the fact that $b^{2}=a+u n$ for some u, so if p is a prime divisor of n, then

$$
p \mid b \text { iff } p \mid a
$$

Quadratic residues in \mathbf{Z}_{n}^{*}

If $a, b \in \mathbf{Z}_{n}$ and $b^{2} \equiv a(\bmod n)$, then

$$
b \in \mathbf{Z}_{n}^{*} \text { iff } a \in \mathbf{Z}_{n}^{*} .
$$

Why? Because

$$
\operatorname{gcd}(b, n)=1 \text { iff } \operatorname{gcd}(a, n)=1
$$

This follows from the fact that $b^{2}=a+u n$ for some u, so if p is a prime divisor of n, then

$$
p \mid b \text { iff } p \mid a
$$

Henceforth, we will generally assume that all quadratic residues and square roots under discussion are in \mathbf{Z}_{n}^{*}.

QR_{n} and QNR_{n}

We partition \mathbf{Z}_{n}^{*} into two parts.

$$
\begin{aligned}
& \mathrm{QR}_{n}=\left\{a \in \mathbf{Z}_{n}^{*} \mid a \text { is a quadratic residue modulo } n\right\} . \\
& \mathrm{QNR}_{n}=\mathbf{Z}_{n}^{*}-\mathrm{QR}_{n} .
\end{aligned}
$$

QR_{n} is the set of quadratic residues modulo n.
QNR_{n} is the set of quadratic non-residues modulo n.
For $a \in \mathrm{QR}_{n}$, we sometimes write

$$
\sqrt{a}=\left\{b \in \mathbf{Z}_{n}^{*} \mid b^{2} \equiv a(\bmod n)\right\}
$$

the set of square roots of a modulo n.

Quadratic residues in \mathbf{Z}_{15}^{*}

The following table shows all elements of $\mathbf{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$ and their squares.

a	$a^{2} \bmod 15$	
1		1
2		4
4		1
7		4
8	$=-7$	4
11	$=-4$	1
13	$=-2$	4
14	$=-1$	1

Thus, $\mathrm{QR}_{15}=\{1,4\}$ and $\mathrm{QNR}_{15}=\{2,7,8,11,13,14\}$.

Quadratic residues modulo a prime

We next look at the case where $n=p$ is an odd prime.

Fact

For an odd prime p, every $a \in Q R_{p}$ has exactly two square roots in \mathbf{Z}_{p}^{*}, and exactly $1 / 2$ of the elements of \mathbf{Z}_{p}^{*} are quadratic residues.

In other words, if $a \in \mathrm{QR}_{p}$
(1) $|\sqrt{a}|=2$.
(2) $\left|\mathrm{QR}_{n}\right|=\left|\mathbf{Z}_{p}^{*}\right| / 2$.

Quadratic residues in \mathbf{Z}_{11}^{*}

The following table shows all elements $b \in \mathbf{Z}_{11}^{*}$ and their squares.

b	$b^{2} \bmod 11$	b	$-b$	$b^{2} \bmod 11$
1	1	6	-5	3
2	4	7	-4	5
3	9	8	-3	9
4	5	9	-2	4
5	3	10	-1	1

Thus, $\mathrm{QR}_{11}=\{1,3,4,5,9\}$ and $\mathrm{QNR}_{11}=\{2,6,7,8,10\}$.

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

- Let $a \in \mathrm{QR}_{p}$. It must have a square root $b \in \mathbf{Z}_{p}^{*}$.

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

- Let $a \in \mathrm{QR}_{p}$. It must have a square root $b \in \mathbf{Z}_{p}^{*}$.
- Consider $-b \in \mathbf{Z}_{p}$. $-b \in \sqrt{a}$ since $(-b)^{2} \equiv b^{2} \equiv a(\bmod p)$.

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

- Let $a \in \mathrm{QR}_{p}$. It must have a square root $b \in \mathbf{Z}_{p}^{*}$.
- Consider $-b \in \mathbf{Z}_{p}$. $-b \in \sqrt{a}$ since $(-b)^{2} \equiv b^{2} \equiv a(\bmod p)$.
- Moreover, $b \not \equiv-b(\bmod p)$ since $p \nmid 2 b$.

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

- Let $a \in \mathrm{QR}_{p}$. It must have a square root $b \in \mathbf{Z}_{p}^{*}$.
- Consider $-b \in \mathbf{Z}_{p}$. $-b \in \sqrt{a}$ since $(-b)^{2} \equiv b^{2} \equiv a(\bmod p)$.
- Moreover, $b \not \equiv-b(\bmod p)$ since $p \nmid 2 b$.
- Hence, b and $-b$ are distinct elements of \sqrt{a}, so $|\sqrt{a}| \geq 2$.

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

- Let $a \in \mathrm{QR}_{p}$. It must have a square root $b \in \mathbf{Z}_{p}^{*}$.
- Consider $-b \in \mathbf{Z}_{p}$. $-b \in \sqrt{a}$ since $(-b)^{2} \equiv b^{2} \equiv a(\bmod p)$.
- Moreover, $b \not \equiv-b(\bmod p)$ since $p \nmid 2 b$.
- Hence, b and $-b$ are distinct elements of \sqrt{a}, so $|\sqrt{a}| \geq 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^{2} \equiv a \equiv b^{2}(\bmod p)$.

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

- Let $a \in \mathrm{QR}_{p}$. It must have a square root $b \in \mathbf{Z}_{p}^{*}$.
- Consider $-b \in \mathbf{Z}_{p}$. $-b \in \sqrt{a}$ since $(-b)^{2} \equiv b^{2} \equiv a(\bmod p)$.
- Moreover, $b \not \equiv-b(\bmod p)$ since $p \nmid 2 b$.
- Hence, b and $-b$ are distinct elements of \sqrt{a}, so $|\sqrt{a}| \geq 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^{2} \equiv a \equiv b^{2}(\bmod p)$.
- Hence, $p \mid c^{2}-b^{2}$, so $p \mid(c-b)(c+b)$.

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

- Let $a \in \mathrm{QR}_{p}$. It must have a square root $b \in \mathbf{Z}_{p}^{*}$.
- Consider $-b \in \mathbf{Z}_{p}$. $-b \in \sqrt{a}$ since $(-b)^{2} \equiv b^{2} \equiv a(\bmod p)$.
- Moreover, $b \not \equiv-b(\bmod p)$ since $p \nmid 2 b$.
- Hence, b and $-b$ are distinct elements of \sqrt{a}, so $|\sqrt{a}| \geq 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^{2} \equiv a \equiv b^{2}(\bmod p)$.
- Hence, $p \mid c^{2}-b^{2}$, so $p \mid(c-b)(c+b)$.
- Since p is prime, then either $p \mid(c-b)$ or $p \mid(c+b)$ (or both).

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

- Let $a \in \mathrm{QR}_{p}$. It must have a square root $b \in \mathbf{Z}_{p}^{*}$.
- Consider $-b \in \mathbf{Z}_{p} .-b \in \sqrt{a}$ since $(-b)^{2} \equiv b^{2} \equiv a(\bmod p)$.
- Moreover, $b \not \equiv-b(\bmod p)$ since $p \nmid 2 b$.
- Hence, b and $-b$ are distinct elements of \sqrt{a}, so $|\sqrt{a}| \geq 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^{2} \equiv a \equiv b^{2}(\bmod p)$.
- Hence, $p \mid c^{2}-b^{2}$, so $p \mid(c-b)(c+b)$.
- Since p is prime, then either $p \mid(c-b)$ or $p \mid(c+b)$ (or both).
- If $p \mid(c-b)$, then $c \equiv b(\bmod p)$.

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

- Let $a \in \mathrm{QR}_{p}$. It must have a square root $b \in \mathbf{Z}_{p}^{*}$.
- Consider $-b \in \mathbf{Z}_{p} .-b \in \sqrt{a}$ since $(-b)^{2} \equiv b^{2} \equiv a(\bmod p)$.
- Moreover, $b \not \equiv-b(\bmod p)$ since $p \nmid 2 b$.
- Hence, b and $-b$ are distinct elements of \sqrt{a}, so $|\sqrt{a}| \geq 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^{2} \equiv a \equiv b^{2}(\bmod p)$.
- Hence, $p \mid c^{2}-b^{2}$, so $p \mid(c-b)(c+b)$.
- Since p is prime, then either $p \mid(c-b)$ or $p \mid(c+b)$ (or both).
- If $p \mid(c-b)$, then $c \equiv b(\bmod p)$.
- If $p \mid(c+b)$, then $c \equiv-b(\bmod p)$.

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

- Let $a \in \mathrm{QR}_{p}$. It must have a square root $b \in \mathbf{Z}_{p}^{*}$.
- Consider $-b \in \mathbf{Z}_{p}$. $-b \in \sqrt{a}$ since $(-b)^{2} \equiv b^{2} \equiv a(\bmod p)$.
- Moreover, $b \not \equiv-b(\bmod p)$ since $p \nmid 2 b$.
- Hence, b and $-b$ are distinct elements of \sqrt{a}, so $|\sqrt{a}| \geq 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^{2} \equiv a \equiv b^{2}(\bmod p)$.
- Hence, $p \mid c^{2}-b^{2}$, so $p \mid(c-b)(c+b)$.
- Since p is prime, then either $p \mid(c-b)$ or $p \mid(c+b)$ (or both).
- If $p \mid(c-b)$, then $c \equiv b(\bmod p)$.
- If $p \mid(c+b)$, then $c \equiv-b(\bmod p)$.
- Hence, $c= \pm b$, so $\sqrt{a}=\{b,-b\}$, and $|\sqrt{a}|=2$.

Proof that $|\sqrt{a}|=2$ modulo a prime

We show that $|\sqrt{a}|=2$ for $a \in \mathrm{QR}_{p}$.

- Let $a \in \mathrm{QR}_{p}$. It must have a square root $b \in \mathbf{Z}_{p}^{*}$.
- Consider $-b \in \mathbf{Z}_{p} .-b \in \sqrt{a}$ since $(-b)^{2} \equiv b^{2} \equiv a(\bmod p)$.
- Moreover, $b \not \equiv-b(\bmod p)$ since $p \nmid 2 b$.
- Hence, b and $-b$ are distinct elements of \sqrt{a}, so $|\sqrt{a}| \geq 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^{2} \equiv a \equiv b^{2}(\bmod p)$.
- Hence, $p \mid c^{2}-b^{2}$, so $p \mid(c-b)(c+b)$.
- Since p is prime, then either $p \mid(c-b)$ or $p \mid(c+b)$ (or both).
- If $p \mid(c-b)$, then $c \equiv b(\bmod p)$.
- If $p \mid(c+b)$, then $c \equiv-b(\bmod p)$.
- Hence, $c= \pm b$, so $\sqrt{a}=\{b,-b\}$, and $|\sqrt{a}|=2$.
- Finally, since each $b \in \mathbf{Z}_{p}^{*}$ is the square root of exactly one element of QR_{p}, it must be that $\left|\mathrm{QR}_{p}\right|=\frac{1}{2}\left|\mathbf{Z}_{p}^{*}\right|$ as desired.

Quadratic residues modulo pq

We now turn to the case where $n=p q$ is the product of distinct odd primes.

Fact

Let $n=p q$ for p, q distinct odd primes. Then every $a \in Q R_{n}$ has exactly four square roots in \mathbf{Z}_{n}^{*}, and exactly $1 / 4$ of the elements of \mathbf{Z}_{n}^{*} are quadratic residues.

In other words, if $a \in \mathrm{QR}_{n}$
(1) $|\sqrt{a}|=4$.
(2) $\left|\mathrm{QR}_{n}\right|=\left|\mathbf{Z}_{n}^{*}\right| / 4$.

Proof that $|\sqrt{a}|=4$ modulo $p q$

We show that $|\sqrt{a}|=4$ for $a \in \mathrm{QR}_{n}$.

Proof that $|\sqrt{a}|=4$ modulo $p q$

We show that $|\sqrt{a}|=4$ for $a \in \mathrm{QR}_{n}$.

- Let $a \in \mathrm{QR}_{n}$. Then $b^{2} \equiv a(\bmod n)$ for some $b \in \mathbf{Z}_{n}^{*}$,

Proof that $|\sqrt{a}|=4$ modulo $p q$

We show that $|\sqrt{a}|=4$ for $a \in \mathrm{QR}_{n}$.

- Let $a \in \mathrm{QR}_{n}$. Then $b^{2} \equiv a(\bmod n)$ for some $b \in \mathbf{Z}_{n}^{*}$,
- Then $b^{2} \equiv a(\bmod p)$ and $b^{2} \equiv a(\bmod q)$.

Proof that $|\sqrt{a}|=4$ modulo $p q$

We show that $|\sqrt{a}|=4$ for $a \in \mathrm{QR}_{n}$.

- Let $a \in \mathrm{QR}_{n}$. Then $b^{2} \equiv a(\bmod n)$ for some $b \in \mathbf{Z}_{n}^{*}$,
- Then $b^{2} \equiv a(\bmod p)$ and $b^{2} \equiv a(\bmod q)$.
- Therefore, b is a square root of a modulo both p and q.

Proof that $|\sqrt{a}|=4$ modulo $p q$

We show that $|\sqrt{a}|=4$ for $a \in \mathrm{QR}_{n}$.

- Let $a \in \mathrm{QR}_{n}$. Then $b^{2} \equiv a(\bmod n)$ for some $b \in \mathbf{Z}_{n}^{*}$,
- Then $b^{2} \equiv a(\bmod p)$ and $b^{2} \equiv a(\bmod q)$.
- Therefore, b is a square root of a modulo both p and q.
- Conversely, if $b_{p} \in \sqrt{a}(\bmod p)$ and $b_{q} \in \sqrt{a}(\bmod q)$, then by the Chinese Remainder theorem, the unique number $b \in \mathbf{Z}_{n}^{*}$ such that $b \equiv b_{p}(\bmod p)$ and $b \equiv b_{q}(\bmod q)$ is a square root of $a(\bmod n)$.

Proof that $|\sqrt{a}|=4$ modulo $p q$

We show that $|\sqrt{a}|=4$ for $a \in \mathrm{QR}_{n}$.

- Let $a \in \mathrm{QR}_{n}$. Then $b^{2} \equiv a(\bmod n)$ for some $b \in \mathbf{Z}_{n}^{*}$,
- Then $b^{2} \equiv a(\bmod p)$ and $b^{2} \equiv a(\bmod q)$.
- Therefore, b is a square root of a modulo both p and q.
- Conversely, if $b_{p} \in \sqrt{a}(\bmod p)$ and $b_{q} \in \sqrt{a}(\bmod q)$, then by the Chinese Remainder theorem, the unique number $b \in \mathbf{Z}_{n}^{*}$ such that $b \equiv b_{p}(\bmod p)$ and $b \equiv b_{q}(\bmod q)$ is a square root of $a(\bmod n)$.
- Since a has two square roots mod p and two square roots $\bmod q$, it follows by the Chinese remainder theorem that a has four distinct square roots mod n.

Proof that $|\sqrt{a}|=4$ modulo $p q$

We show that $|\sqrt{a}|=4$ for $a \in \mathrm{QR}_{n}$.

- Let $a \in \mathrm{QR}_{n}$. Then $b^{2} \equiv a(\bmod n)$ for some $b \in \mathbf{Z}_{n}^{*}$,
- Then $b^{2} \equiv a(\bmod p)$ and $b^{2} \equiv a(\bmod q)$.
- Therefore, b is a square root of a modulo both p and q.
- Conversely, if $b_{p} \in \sqrt{a}(\bmod p)$ and $b_{q} \in \sqrt{a}(\bmod q)$, then by the Chinese Remainder theorem, the unique number $b \in \mathbf{Z}_{n}^{*}$ such that $b \equiv b_{p}(\bmod p)$ and $b \equiv b_{q}(\bmod q)$ is a square root of $a(\bmod n)$.
- Since a has two square roots mod p and two square roots $\bmod q$, it follows by the Chinese remainder theorem that a has four distinct square roots mod n.
- Finally, since each $b \in \mathbf{Z}_{n}^{*}$ is the square root of exactly one element of QR_{n}, it must be that $\left|\mathrm{QR}_{n}\right|=\frac{1}{4}\left|\mathbf{Z}_{n}^{*}\right|$ as desired.

Testing for membership in QR_{p}

Theorem (Euler Criterion)

An integer a is a non-triviala quadratic residue modulo a prime p iff

$$
a^{(p-1) / 2} \equiv 1(\bmod p) .
$$

${ }^{a} \mathrm{~A}$ non-trivial quadratic residue is one that is not equivalent to $0(\bmod p)$.

Proof in forward direction.

Let $a \equiv b^{2}(\bmod p)$ for some $b \not \equiv 0(\bmod p)$. Then

$$
a^{(p-1) / 2} \equiv\left(b^{2}\right)^{(p-1) / 2} \equiv b^{p-1} \equiv 1(\bmod p)
$$

by Euler's theorem, as desired.

Proof of Euler Criterion

Proof in reverse direction.

Suppose $a^{(p-1) / 2} \equiv 1(\bmod p)$. Clearly $a \not \equiv 0(\bmod p)$. We find a square root b of a modulo p.

Proof of Euler Criterion

Proof in reverse direction.

Suppose $a^{(p-1) / 2} \equiv 1(\bmod p)$. Clearly $a \not \equiv 0(\bmod p)$. We find a square root b of a modulo p.

Let g be a primitive root of p. Choose k so that $a \equiv g^{k}(\bmod p)$, and let $\ell=(p-1) k / 2$. Then

$$
g^{\ell} \equiv g^{(p-1) k / 2} \equiv\left(g^{k}\right)^{(p-1) / 2} \equiv a^{(p-1) / 2} \equiv 1(\bmod p)
$$

Proof of Euler Criterion

Proof in reverse direction.

Suppose $a^{(p-1) / 2} \equiv 1(\bmod p)$. Clearly $a \not \equiv 0(\bmod p)$. We find a square root b of a modulo p.

Let g be a primitive root of p. Choose k so that $a \equiv g^{k}(\bmod p)$, and let $\ell=(p-1) k / 2$. Then

$$
g^{\ell} \equiv g^{(p-1) k / 2} \equiv\left(g^{k}\right)^{(p-1) / 2} \equiv a^{(p-1) / 2} \equiv 1(\bmod p) .
$$

Since g is a primitive root, $(p-1) \mid \ell$. Hence, $2 \mid k$ and $k / 2$ is an integer.

Proof of Euler Criterion

Proof in reverse direction.

Suppose $a^{(p-1) / 2} \equiv 1(\bmod p)$. Clearly $a \not \equiv 0(\bmod p)$. We find a square root b of a modulo p.

Let g be a primitive root of p. Choose k so that $a \equiv g^{k}(\bmod p)$, and let $\ell=(p-1) k / 2$. Then

$$
g^{\ell} \equiv g^{(p-1) k / 2} \equiv\left(g^{k}\right)^{(p-1) / 2} \equiv a^{(p-1) / 2} \equiv 1(\bmod p)
$$

Since g is a primitive root, $(p-1) \mid \ell$. Hence, $2 \mid k$ and $k / 2$ is an integer.
Let $b=g^{k / 2}$. Then $b^{2} \equiv g^{k} \equiv a(\bmod p)$, so b is a non-trivial square root of a modulo p, as desired.

Finding square roots modulo prime $p \equiv 3(\bmod 4)$

The Euler criterion lets us test membership in QR_{p} for prime p, but it doesn't tell us how to find square roots. They are easily found in the special case when $p \equiv 3(\bmod 4)$.

Theorem

Let $p \equiv 3(\bmod 4), a \in \mathrm{QR}_{p}$. Then $b=a^{(p+1) / 4}$ is a square root of a $(\bmod p)$.

Proof.

$p+1$ is divisible by 4 , so $(p+1) / 4$ is an integer. Then

$$
b^{2} \equiv\left(a^{(p+1) / 4}\right)^{2} \equiv a^{(p+1) / 2} \equiv a^{1+(p-1) / 2} \equiv a \cdot 1 \equiv a(\bmod p)
$$

by the Euler Criterion.

Finding square roots for general primes

We now present an algorithm due to D. Shanks ${ }^{1}$ that finds square roots of quadratic residues modulo any odd prime p.

It bears a strong resemblance to the algorithm presented in lecture 11 for factoring the RSA modulus given both the encryption and decryption exponents.

Let p be an odd prime. Write $\phi(p)=p-1=2^{s} t$, where t is odd. (Recall: s is \# trailing 0 's in the binary expansion of $p-1$.)

Because p is odd, $p-1$ is even, so $s \geq 1$.

[^0]
A special case

In the special case when $s=1$, then $p-1=2 t$, so $p=2 t+1$.
Writing the odd number t as $2 \ell+1$ for some integer ℓ, we have

$$
p=2(2 \ell+1)+1=4 \ell+3,
$$

so $p \equiv 3(\bmod 4)$.
This is exactly the case that we handled above.

Overall structure of Shank's algorithm

Let $p-1=2^{s} t$ be as above, where p is an odd prime.
Assume $a \in \mathrm{QR}_{p}$ is a quadratic residue and $u \in \mathrm{QNR}_{p}$ is a quadratic non-residue.

We can easily find u by choosing random elements of \mathbf{Z}_{p}^{*} and applying the Euler Criterion.

The goal is to find x such that $x^{2} \equiv a(\bmod p)$.

Shanks's algorithm

1. Let s, t satisfy $p-1=2^{s} t$ and t odd.
2. Let $u \in \mathrm{QNR}_{p}$.
3. $k=s$
4. $\quad z=u^{t} \bmod p$
5. $x=a^{(t+1) / 2} \bmod p$
6. $b=a^{t} \bmod p$
7. while $(b \not \equiv 1(\bmod p))\{$
8.
9. let m be the least integer with $b^{2^{m}} \equiv 1(\bmod p)$
$t=z^{2^{k-m-1}} \bmod p$
10.

$z=t^{2} \bmod p$
$b=b z \bmod p$
$x=x t \bmod p$
$k=m$
14. \}
15. return x

Figure: Shank's algorithm for finding a square root of $a(\bmod n)$.

Loop invariant

The congruence

$$
x^{2} \equiv a b(\bmod p)
$$

is easily shown to be a loop invariant.
It's clearly true initially since $x^{2} \equiv a^{t+1}$ and $b \equiv a^{t}(\bmod p)$.
Each time through the loop, a is unchanged, b gets multiplied by t^{2} (lines 10 and 11), and x gets multiplied by t (line 12); hence the invariant remains true regardless of the value of t.

If the program terminates, we have $b \equiv 1(\bmod p)$, so $x^{2} \equiv a$, and x is a square root of $a(\bmod p)$.

Termination proof

The algorithm terminates after at most s iterations of the loop.
To see why, we look at the orders ${ }^{2}$ of b and $z(\bmod p)$ at the start of each loop iteration (before line 8) and show that $\operatorname{ord}(b)<\operatorname{ord}(z)=2^{k}$.

On the first iteration, $k=s$, and $z \equiv u^{t}(\bmod p)$. We argue that $\operatorname{ord}(z)=2^{s}$. Clearly

$$
z^{2^{s}} \equiv u^{2^{s} t} \equiv u^{p-1} \equiv 1(\bmod p)
$$

so ord $(z) \mid 2^{s}$. By the Euler Criterion, since u is a non-residue, we have

$$
z^{2^{s-1}} \equiv u^{2^{s-1} t} \equiv u^{(p-1) / 2} \not \equiv 1(\bmod p) .
$$

Hence, $\operatorname{ord}(z)=2^{s}$.

[^1]
Termination proof (cont.)

Still on the first iteration, $b=a^{t}(\bmod p)$ and $k=s$.
Since a is a quadratic residue,

$$
b^{2^{s-1}} \equiv a^{2^{s-1} t} \equiv a^{(p-1) / 2} \equiv 1(\bmod p)
$$

by the Euler Criterion. Hence, $\operatorname{ord}(b) \mid 2^{s-1}$.
It follows that $\operatorname{ord}(b) \leq 2^{s-1}<2^{s}$.
Since $\operatorname{ord}(z)=2^{s}$, we have $\operatorname{ord}(b)<\operatorname{ord}(z)=2^{s}=2^{k}$.

Termination proof (cont.)

Now, on each iteration, line 8 sets $m=\operatorname{ord}(b)$ and line 9 sets $t=z^{2^{k-m-1}} \bmod p$, so

$$
\operatorname{ord}(t)=\frac{\operatorname{ord}(z)}{2^{k-m-1}}=\frac{2^{k}}{2^{k-m-1}}=2^{m+1}
$$

Line 10 sets $z=t^{2}$, so $\operatorname{ord}(z)=\operatorname{ord}(t) / 2=2^{m}$.
After line 11, $\operatorname{ord}(b)<2^{m}$. This because the old value of b and the new value of z both have order 2^{m}. Hence, both of those numbers raised to the power 2^{m-1} are $-1(\bmod p)$, so their product (the new value of b) raised to that same power is $(-1)^{2} \equiv 1$.

Line 13 sets $k=m$ in preparation for the next iteration, and the loop invariant $\operatorname{ord}(b)<\operatorname{ord}(z)=2^{k}$ is maintained. Moreover, $\operatorname{ord}(b)$ is reduced at each iteration, so the loop must terminate after at most s iterations.

Quadratic residues modulo $n=p q$

Let $n=p q, p, q$ distinct odd primes.
We divide the numbers in \mathbf{Z}_{n}^{*} into four classes depending on their membership in QR_{p} and QR_{q}. ${ }^{3}$

- Let $Q_{n}^{11}=\left\{a \in \mathbf{Z}_{n}^{*} \mid a \in \mathrm{QR}_{p} \cap \mathrm{QR}_{q}\right\}$.
- Let $Q_{n}^{10}=\left\{a \in \mathbf{Z}_{n}^{*} \mid a \in \mathrm{QR}_{p} \cap \mathrm{QNR}_{q}\right\}$.
- Let $Q_{n}^{01}=\left\{a \in \mathbf{Z}_{n}^{*} \mid a \in \operatorname{QNR}_{p} \cap \mathrm{QR}_{q}\right\}$.
- Let $Q_{n}^{00}=\left\{a \in \mathbf{Z}_{n}^{*} \mid a \in \operatorname{QNR}_{p} \cap \mathrm{QNR}_{q}\right\}$.

Under these definitions,

$$
\begin{gathered}
\mathrm{QR}_{n}=Q_{n}^{11} \\
\mathrm{QNR}_{n}=Q_{n}^{00} \cup Q_{n}^{01} \cup Q_{n}^{10}
\end{gathered}
$$

${ }^{3}$ To be strictly formal, we classify $a \in \mathbf{Z}_{n}^{*}$ according to whether or not $(a \bmod p) \in \mathrm{QR}_{p}$ and whether or not $(a \bmod q) \in \mathrm{QR}_{q}$.

Quadratic residuosity problem

Definition (Quadratic residuosity problem)

The quadratic residuosity problem is to decide, given $a \in Q_{n}^{00} \cup Q_{n}^{11}$, whether or not $a \in \mathrm{QR}_{n}$.

Fact

There is no known feasible algorithm for solving the quadratic residuosity problem that gives the correct answer significantly more than $1 / 2$ the time for uniformly distributed random $a \in Q_{n}^{00} \cup Q_{n}^{11}$.

Goldwasser-Micali probabilistic cryptosystem

The Goldwasser-Micali cryptosystem is based on the assumed hardness of the quadratic residuosity problem.

The public key consist of a pair $e=(n, y)$, where $n=p q$ for distinct odd primes p, q, and $y \in Q_{n}^{00}$.
The private key consists of p.
The message space is $\mathcal{M}=\{0,1\}$. (Single bits!)
To encrypt $m \in \mathcal{M}$, Alice chooses a random $a \in \mathrm{QR}_{n}$.
She does this by choosing a random member of \mathbf{Z}_{n}^{*} and squaring it.
If $m=0$, then $c=a \bmod n \in Q_{n}^{11}$.
If $m=1$, then $c=$ ay $\bmod n \in Q_{n}^{00}$.
Hence, the problem of finding m given c is equivalent to the problem of testing if $c \in \mathrm{QR}_{n}$, given that $c \in Q_{n}^{00} \cup Q_{n}^{11}$.

Decryption in Goldwasser-Micali encryption

Bob, knowing the private key p, can use the Euler Criterion to quickly determine whether or not $c \in \mathrm{QR}_{p}$ and hence whether $c \in Q_{n}^{11}$ or $c \in Q_{n}^{00}$, thereby determining m.

Eve's problem of determining whether c encrypts 0 or 1 is the same as the problem of distinguishing between membership in Q_{n}^{00} and Q_{n}^{11}, which is just the quadratic residuosity problem, assuming the ciphertexts are uniformly distributed.

One can show that every element of Q_{n}^{11} is equally likely to be chosen as the ciphertext c in case $m=0$, and every element of Q_{n}^{00} is equally likely to be chosen as the ciphertext c in case $m=1$. If the messages are also uniformly distributed, then any element of $Q_{n}^{00} \cup Q_{n}^{11}$ is equally likely to be the ciphertext.

[^0]: ${ }^{1}$ Shanks's algorithm appeared in his paper, "Five number-theoretic algorithms", in Proceedings of the Second Manitoba Conference on Numerical Mathematics, Congressus Numerantium, No. VII, 1973, 51-70. Our treatment is taken from the paper by Jan-Christoph Schlage-Puchta", "On Shank's Algorithm for Modular Square Roots", Applied Mathematics E-Notes, 5 (2005), 84-88.

[^1]: ${ }^{2}$ Recall that the order of an element g modulo p is the least integer k such that $g^{k} \equiv 1(\bmod p)$.

