CPSC 467b: Cryptography and Computer Security Lecture 13

Michael J. Fischer

Department of Computer Science Yale University

February 22, 2010

1 Quadratic Residues, Squares, and Square Roots

- Square Roots Modulo a Prime
- Square Roots Modulo the Product of Two Primes
- Euler Criterion

Pinding Square Roots

- Square Roots Modulo Special Primes
- Square Roots Modulo General Odd Primes

Quadratic residues modulo n

An integer b is said to be a square root modulo n of an integer a if

$$b^2 \equiv a \pmod{n}$$
.

a is called a *quadratic residue (or perfect square) modulo n* if has a square root modulo *n*.

Quadratic residues in \mathbf{Z}_n^*

If $a, b \in \mathbf{Z}_n$ and $b^2 \equiv a \pmod{n}$, then

$$b \in \mathbf{Z}_n^*$$
 iff $a \in \mathbf{Z}_n^*$.

Why?

Quadratic residues in \mathbf{Z}_n^*

If $a, b \in \mathbf{Z}_n$ and $b^2 \equiv a \pmod{n}$, then

 $b \in \mathbf{Z}_n^*$ iff $a \in \mathbf{Z}_n^*$.

Why? Because

$$gcd(b, n) = 1$$
 iff $gcd(a, n) = 1$

This follows from the fact that $b^2 = a + un$ for some u, so if p is a prime divisor of n, then

 $p \mid b$ iff $p \mid a$.

Quadratic residues in \mathbf{Z}_n^*

If $a, b \in \mathbf{Z}_n$ and $b^2 \equiv a \pmod{n}$, then

 $b \in \mathbf{Z}_n^*$ iff $a \in \mathbf{Z}_n^*$.

Why? Because

$$gcd(b, n) = 1$$
 iff $gcd(a, n) = 1$

This follows from the fact that $b^2 = a + un$ for some u, so if p is a prime divisor of n, then

$$p \mid b$$
 iff $p \mid a$.

Henceforth, we will generally assume that all quadratic residues and square roots under discussion are in Z_n^* .

QR_n and QNR_n

We partition \mathbf{Z}_n^* into two parts.

$$\begin{split} & \operatorname{QR}_n = \{ a \in \mathbf{Z}_n^* \mid a \text{ is a quadratic residue modulo } n \}. \\ & \operatorname{QNR}_n = \mathbf{Z}_n^* - \operatorname{QR}_n. \end{split}$$

 QR_n is the set of quadratic residues modulo n. QNR_n is the set of quadratic non-residues modulo n. For $a \in QR_n$, we sometimes write

$$\sqrt{a} = \{ b \in \mathbf{Z}_n^* \mid b^2 \equiv a \pmod{n} \},\$$

the set of square roots of a modulo n.

Quadratic residues in Z_{15}^*

The following table shows all elements of $\pmb{Z}_{15}^*=\{1,2,4,7,8,11,13,14\}$ and their squares.

а		a ² mod 15		
1		1		
2		4		
4		1		
7		4		
8	= -7	4		
11	= -4	1		
13	= -2	4		
14	= -1	1		

Thus, $\mathrm{QR}_{15} = \{1,4\}$ and $\mathrm{QNR}_{15} = \{2,7,8,11,13,14\}.$

Quadratic residues modulo a prime

We next look at the case where n = p is an odd prime.

Fact

For an odd prime p, every $a \in QR_p$ has exactly two square roots in \mathbf{Z}_p^* , and exactly 1/2 of the elements of \mathbf{Z}_p^* are quadratic residues.

In other words, if $a \in QR_p$

1
$$|\sqrt{a}| = 2.$$

$$|\operatorname{QR}_n| = |\mathbf{Z}_p^*|/2.$$

Quadratic residues in Z_{11}^*

The following table shows all elements $b \in \mathbf{Z}_{11}^*$ and their squares.

b	<i>b</i> ² mod 11	Ь	-b	<i>b</i> ² mod 11
1	1	6	-5	3
2	4	7	-4	5
3	9	8	-3	9
4	5	9	-2	4
5	3	10	-1	1

Thus, $\mathrm{QR}_{11} = \{1,3,4,5,9\}$ and $\mathrm{QNR}_{11} = \{2,6,7,8,10\}.$

We show that $|\sqrt{a}| = 2$ for $a \in QR_p$.

• Let $a \in QR_p$. It must have a square root $b \in \mathbf{Z}_p^*$.

- Let $a \in QR_p$. It must have a square root $b \in \mathbf{Z}_p^*$.
- Consider $-b \in \mathbf{Z}_p$. $-b \in \sqrt{a}$ since $(-b)^2 \equiv b^2 \equiv a \pmod{p}$.

Outline Quadratic Residues Finding sqrt QR crypto

Proof that $|\sqrt{a}| = 2$ modulo a prime

We show that $|\sqrt{a}| = 2$ for $a \in QR_p$.

- Let $a \in QR_p$. It must have a square root $b \in \mathbf{Z}_p^*$.
- Consider $-b \in \mathbf{Z}_p$. $-b \in \sqrt{a}$ since $(-b)^2 \equiv b^2 \equiv a \pmod{p}$.

• Moreover, $b \not\equiv -b \pmod{p}$ since $p \not\downarrow 2b$.

- Let $a \in QR_p$. It must have a square root $b \in \mathbf{Z}_p^*$.
- Consider $-b \in \mathbf{Z}_p$. $-b \in \sqrt{a}$ since $(-b)^2 \equiv b^2 \equiv a \pmod{p}$.
- Moreover, $b \not\equiv -b \pmod{p}$ since $p \not\downarrow 2b$.
- Hence, b and -b are distinct elements of \sqrt{a} , so $|\sqrt{a}| \ge 2$.

- Let $a \in QR_p$. It must have a square root $b \in \mathbf{Z}_p^*$.
- Consider $-b \in \mathbf{Z}_p$. $-b \in \sqrt{a}$ since $(-b)^2 \equiv b^2 \equiv a \pmod{p}$.
- Moreover, $b \not\equiv -b \pmod{p}$ since $p \not\downarrow 2b$.
- Hence, b and -b are distinct elements of \sqrt{a} , so $|\sqrt{a}| \ge 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^2 \equiv a \equiv b^2 \pmod{p}$.

- Let $a \in QR_p$. It must have a square root $b \in \mathbf{Z}_p^*$.
- Consider $-b \in \mathbf{Z}_p$. $-b \in \sqrt{a}$ since $(-b)^2 \equiv b^2 \equiv a \pmod{p}$.
- Moreover, $b \not\equiv -b \pmod{p}$ since $p \not\mid 2b$.
- Hence, b and -b are distinct elements of \sqrt{a} , so $|\sqrt{a}| \ge 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^2 \equiv a \equiv b^2 \pmod{p}$.
- Hence, $p | c^2 b^2$, so p | (c b)(c + b).

- Let $a \in QR_p$. It must have a square root $b \in \mathbf{Z}_p^*$.
- Consider $-b \in \mathbf{Z}_p$. $-b \in \sqrt{a}$ since $(-b)^2 \equiv b^2 \equiv a \pmod{p}$.
- Moreover, $b \not\equiv -b \pmod{p}$ since $p \not\mid 2b$.
- Hence, b and -b are distinct elements of \sqrt{a} , so $|\sqrt{a}| \ge 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^2 \equiv a \equiv b^2 \pmod{p}$.
- Hence, $p | c^2 b^2$, so p | (c b)(c + b).
- Since p is prime, then either p|(c-b) or p|(c+b) (or both).

- Let $a \in QR_p$. It must have a square root $b \in \mathbf{Z}_p^*$.
- Consider $-b \in \mathbf{Z}_p$. $-b \in \sqrt{a}$ since $(-b)^2 \equiv b^2 \equiv a \pmod{p}$.
- Moreover, $b \not\equiv -b \pmod{p}$ since $p \not\mid 2b$.
- Hence, b and -b are distinct elements of \sqrt{a} , so $|\sqrt{a}| \ge 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^2 \equiv a \equiv b^2 \pmod{p}$.
- Hence, $p | c^2 b^2$, so p | (c b)(c + b).
- Since p is prime, then either p|(c-b) or p|(c+b) (or both).
- If $p \mid (c b)$, then $c \equiv b \pmod{p}$.

We show that $|\sqrt{a}| = 2$ for $a \in QR_p$.

- Let $a \in QR_p$. It must have a square root $b \in \mathbf{Z}_p^*$.
- Consider $-b \in \mathbf{Z}_p$. $-b \in \sqrt{a}$ since $(-b)^2 \equiv b^2 \equiv a \pmod{p}$.
- Moreover, $b \not\equiv -b \pmod{p}$ since $p \not\mid 2b$.
- Hence, b and -b are distinct elements of \sqrt{a} , so $|\sqrt{a}| \ge 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^2 \equiv a \equiv b^2 \pmod{p}$.
- Hence, $p | c^2 b^2$, so p | (c b)(c + b).
- Since p is prime, then either p|(c-b) or p|(c+b) (or both).
- If $p \mid (c b)$, then $c \equiv b \pmod{p}$.
- If $p \mid (c+b)$, then $c \equiv -b \pmod{p}$.

伺 ト イヨト イヨト

We show that $|\sqrt{a}| = 2$ for $a \in QR_p$.

- Let $a \in QR_p$. It must have a square root $b \in \mathbf{Z}_p^*$.
- Consider $-b \in \mathbf{Z}_{p}$. $-b \in \sqrt{a}$ since $(-b)^2 \equiv b^2 \equiv a \pmod{p}$.
- Moreover, $b \not\equiv -b \pmod{p}$ since $p \not\mid 2b$.
- Hence, b and -b are distinct elements of \sqrt{a} , so $|\sqrt{a}| \ge 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^2 \equiv a \equiv b^2 \pmod{p}$.
- Hence, $p | c^2 b^2$, so p | (c b)(c + b).
- Since p is prime, then either p|(c-b) or p|(c+b) (or both).
- If $p \mid (c b)$, then $c \equiv b \pmod{p}$.
- If $p \mid (c+b)$, then $c \equiv -b \pmod{p}$.
- Hence, $c = \pm b$, so $\sqrt{a} = \{b, -b\}$, and $|\sqrt{a}| = 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Let $a \in QR_p$. It must have a square root $b \in \mathbf{Z}_p^*$.
- Consider $-b \in \mathbf{Z}_p$. $-b \in \sqrt{a}$ since $(-b)^2 \equiv b^2 \equiv a \pmod{p}$.
- Moreover, $b \not\equiv -b \pmod{p}$ since $p \not\mid 2b$.
- Hence, b and -b are distinct elements of \sqrt{a} , so $|\sqrt{a}| \ge 2$.
- Now suppose $c \in \sqrt{a}$. Then $c^2 \equiv a \equiv b^2 \pmod{p}$.
- Hence, $p | c^2 b^2$, so p | (c b)(c + b).
- Since p is prime, then either p|(c-b) or p|(c+b) (or both).
- If $p \mid (c b)$, then $c \equiv b \pmod{p}$.
- If $p \mid (c+b)$, then $c \equiv -b \pmod{p}$.
- Hence, $c = \pm b$, so $\sqrt{a} = \{b, -b\}$, and $|\sqrt{a}| = 2$.
- Finally, since each $b \in \mathbf{Z}_{p}^{*}$ is the square root of exactly one element of QR_{p} , it must be that $|\operatorname{QR}_{p}| = \frac{1}{2}|\mathbf{Z}_{p}^{*}|$ as desired.

Quadratic residues modulo pq

We now turn to the case where n = pq is the product of distinct odd primes.

Fact

Let n = pq for p, q distinct odd primes. Then every $a \in QR_n$ has exactly four square roots in \mathbb{Z}_n^* , and exactly 1/4 of the elements of \mathbb{Z}_n^* are quadratic residues.

In other words, if $a \in QR_n$

1
$$|\sqrt{a}| = 4.$$

2 $|QR_n| = |\mathbf{Z}_n^*|/4$

We show that $|\sqrt{a}| = 4$ for $a \in QR_n$.

We show that $|\sqrt{a}| = 4$ for $a \in QR_n$.

• Let $a \in QR_n$. Then $b^2 \equiv a \pmod{n}$ for some $b \in \mathbf{Z}_n^*$,

- Let $a \in \operatorname{QR}_n$. Then $b^2 \equiv a \pmod{n}$ for some $b \in \mathbf{Z}_n^*$,
- Then $b^2 \equiv a \pmod{p}$ and $b^2 \equiv a \pmod{q}$.

- Let $a \in QR_n$. Then $b^2 \equiv a \pmod{n}$ for some $b \in \mathbf{Z}_n^*$,
- Then $b^2 \equiv a \pmod{p}$ and $b^2 \equiv a \pmod{q}$.
- Therefore, b is a square root of a modulo both p and q.

- Let $a \in \operatorname{QR}_n$. Then $b^2 \equiv a \pmod{n}$ for some $b \in \mathbf{Z}_n^*$,
- Then $b^2 \equiv a \pmod{p}$ and $b^2 \equiv a \pmod{q}$.
- Therefore, b is a square root of a modulo both p and q.
- Conversely, if b_p ∈ √a (mod p) and b_q ∈ √a (mod q), then by the Chinese Remainder theorem, the unique number b ∈ Z^{*}_n such that b ≡ b_p (mod p) and b ≡ b_q (mod q) is a square root of a (mod n).

- Let $a \in \operatorname{QR}_n$. Then $b^2 \equiv a \pmod{n}$ for some $b \in \mathbf{Z}_n^*$,
- Then $b^2 \equiv a \pmod{p}$ and $b^2 \equiv a \pmod{q}$.
- Therefore, b is a square root of a modulo both p and q.
- Conversely, if b_p ∈ √a (mod p) and b_q ∈ √a (mod q), then by the Chinese Remainder theorem, the unique number b ∈ Z^{*}_n such that b ≡ b_p (mod p) and b ≡ b_q (mod q) is a square root of a (mod n).
- Since *a* has two square roots mod *p* and two square roots mod *q*, it follows by the Chinese remainder theorem that *a* has four distinct square roots mod *n*.

- Let $a \in QR_n$. Then $b^2 \equiv a \pmod{n}$ for some $b \in \mathbf{Z}_n^*$,
- Then $b^2 \equiv a \pmod{p}$ and $b^2 \equiv a \pmod{q}$.
- Therefore, b is a square root of a modulo both p and q.
- Conversely, if b_p ∈ √a (mod p) and b_q ∈ √a (mod q), then by the Chinese Remainder theorem, the unique number b ∈ Z^{*}_n such that b ≡ b_p (mod p) and b ≡ b_q (mod q) is a square root of a (mod n).
- Since *a* has two square roots mod *p* and two square roots mod *q*, it follows by the Chinese remainder theorem that *a* has four distinct square roots mod *n*.
- Finally, since each $b \in \mathbf{Z}_n^*$ is the square root of exactly one element of QR_n , it must be that $|QR_n| = \frac{1}{4}|\mathbf{Z}_n^*|$ as desired.

Testing for membership in QR_p

Theorem (Euler Criterion)

An integer a is a non-trivial^a quadratic residue modulo a prime p iff

$$a^{(p-1)/2} \equiv 1 \pmod{p}.$$

^aA non-trivial quadratic residue is one that is not equivalent to 0 (mod p).

Proof in forward direction.

Let
$$a \equiv b^2 \pmod{p}$$
 for some $b \not\equiv 0 \pmod{p}$. Then
 $a^{(p-1)/2} \equiv (b^2)^{(p-1)/2} \equiv b^{p-1} \equiv 1 \pmod{p}$

by Euler's theorem, as desired.

Proof in reverse direction.

Suppose $a^{(p-1)/2} \equiv 1 \pmod{p}$. Clearly $a \not\equiv 0 \pmod{p}$. We find a square root *b* of *a* modulo *p*.

Proof in reverse direction.

Suppose $a^{(p-1)/2} \equiv 1 \pmod{p}$. Clearly $a \not\equiv 0 \pmod{p}$. We find a square root *b* of *a* modulo *p*.

Let g be a primitive root of p. Choose k so that $a \equiv g^k \pmod{p}$, and let $\ell = (p-1)k/2$. Then

$$g^{\ell} \equiv g^{(p-1)k/2} \equiv (g^k)^{(p-1)/2} \equiv a^{(p-1)/2} \equiv 1 \pmod{p}$$

Proof in reverse direction.

Suppose $a^{(p-1)/2} \equiv 1 \pmod{p}$. Clearly $a \not\equiv 0 \pmod{p}$. We find a square root *b* of *a* modulo *p*.

Let g be a primitive root of p. Choose k so that $a \equiv g^k \pmod{p}$, and let $\ell = (p-1)k/2$. Then

$$g^{\ell} \equiv g^{(p-1)k/2} \equiv (g^k)^{(p-1)/2} \equiv a^{(p-1)/2} \equiv 1 \pmod{p}.$$

Since g is a primitive root, $(p-1)|\ell$. Hence, 2|k and k/2 is an integer.

Proof in reverse direction.

Suppose $a^{(p-1)/2} \equiv 1 \pmod{p}$. Clearly $a \not\equiv 0 \pmod{p}$. We find a square root *b* of *a* modulo *p*.

Let g be a primitive root of p. Choose k so that $a \equiv g^k \pmod{p}$, and let $\ell = (p-1)k/2$. Then

$$g^{\ell} \equiv g^{(p-1)k/2} \equiv (g^k)^{(p-1)/2} \equiv a^{(p-1)/2} \equiv 1 \pmod{p}.$$

Since g is a primitive root, $(p-1)|\ell$. Hence, 2|k and k/2 is an integer.

Let $b = g^{k/2}$. Then $b^2 \equiv g^k \equiv a \pmod{p}$, so b is a non-trivial square root of a modulo p, as desired.

Finding square roots modulo prime $p \equiv 3 \pmod{4}$

The Euler criterion lets us test membership in QR_p for prime p, but it doesn't tell us how to find square roots. They are easily found in the special case when $p \equiv 3 \pmod{4}$.

Theorem

Let
$$p \equiv 3 \pmod{4}$$
, $a \in QR_p$. Then $b = a^{(p+1)/4}$ is a square root of a (mod p).

Proof.

p+1 is divisible by 4, so (p+1)/4 is an integer. Then

$$b^2 \equiv (a^{(p+1)/4})^2 \equiv a^{(p+1)/2} \equiv a^{1+(p-1)/2} \equiv a \cdot 1 \equiv a \pmod{p}$$

by the Euler Criterion.

Finding square roots for general primes

We now present an algorithm due to D. Shanks¹ that finds square roots of quadratic residues modulo any odd prime p.

It bears a strong resemblance to the algorithm presented in lecture 11 for factoring the RSA modulus given both the encryption and decryption exponents.

Let p be an odd prime. Write $\phi(p) = p - 1 = 2^{s}t$, where t is odd. (Recall: s is # trailing 0's in the binary expansion of p - 1.)

Because p is odd, p-1 is even, so $s \ge 1$.

¹Shanks's algorithm appeared in his paper, "Five number-theoretic algorithms", in Proceedings of the Second Manitoba Conference on Numerical Mathematics, Congressus Numerantium, No. VII, 1973, 51–70. Our treatment is taken from the paper by Jan-Christoph Schlage-Puchta", "On Shank's Algorithm for Modular Square Roots", *Applied Mathematics E-Notes, 5* (2005), 84–88.

A special case

In the special case when s = 1, then p - 1 = 2t, so p = 2t + 1. Writing the odd number t as $2\ell + 1$ for some integer ℓ , we have

$$p = 2(2\ell + 1) + 1 = 4\ell + 3,$$

so $p \equiv 3 \pmod{4}$.

This is exactly the case that we handled above.

Overall structure of Shank's algorithm

Let $p - 1 = 2^{s}t$ be as above, where p is an odd prime.

Assume $a \in QR_p$ is a quadratic residue and $u \in QNR_p$ is a quadratic non-residue.

We can easily find u by choosing random elements of \mathbf{Z}_p^* and applying the Euler Criterion.

The goal is to find x such that $x^2 \equiv a \pmod{p}$.

Shanks's algorithm

1. Let s, t satisfy
$$p - 1 = 2^{s}t$$
 and t odd.
2. Let $u \in QNR_{p}$.
3. $k = s$
4. $z = u^{t} \mod p$
5. $x = a^{(t+1)/2} \mod p$
6. $b = a^{t} \mod p$
7. while $(b \not\equiv 1 \pmod{p})$ {
8. let m be the least integer with $b^{2^{m}} \equiv 1 \pmod{p}$
9. $t = z^{2^{k-m-1}} \mod p$
10. $z = t^{2} \mod p$
11. $b = bz \mod p$
12. $x = xt \mod p$
13. $k = m$
14. }
15. return x

Figure: Shank's algorithm for finding a square root of $a \pmod{n}$.

Loop invariant

The congruence

$$x^2 \equiv ab \pmod{p}$$

is easily shown to be a loop invariant.

It's clearly true initially since $x^2 \equiv a^{t+1}$ and $b \equiv a^t \pmod{p}$.

Each time through the loop, *a* is unchanged, *b* gets multiplied by t^2 (lines 10 and 11), and *x* gets multiplied by *t* (line 12); hence the invariant remains true regardless of the value of *t*.

If the program terminates, we have $b \equiv 1 \pmod{p}$, so $x^2 \equiv a$, and x is a square root of $a \pmod{p}$.

Termination proof

The algorithm terminates after at most s iterations of the loop.

To see why, we look at the orders² of *b* and *z* (mod *p*) at the start of each loop iteration (before line 8) and show that $ord(b) < ord(z) = 2^k$.

On the first iteration, k = s, and $z \equiv u^t \pmod{p}$. We argue that $ord(z) = 2^s$. Clearly

$$z^{2^s} \equiv u^{2^s t} \equiv u^{p-1} \equiv 1 \pmod{p},$$

so $ord(z)|2^s$. By the Euler Criterion, since *u* is a non-residue, we have

$$z^{2^{s-1}} \equiv u^{2^{s-1}t} \equiv u^{(p-1)/2} \not\equiv 1 \pmod{p}.$$

Hence, $\operatorname{ord}(z) = 2^s$.

²Recall that the order of an element g modulo p is the least integer k such that $g^k \equiv 1 \pmod{p}$.

Termination proof (cont.)

Still on the first iteration, $b = a^t \pmod{p}$ and k = s. Since a is a quadratic residue,

$$b^{2^{s-1}} \equiv a^{2^{s-1}t} \equiv a^{(p-1)/2} \equiv 1 \pmod{p},$$

by the Euler Criterion. Hence, $ord(b)|2^{s-1}$.

It follows that $\operatorname{ord}(b) \le 2^{s-1} < 2^s$. Since $\operatorname{ord}(z) = 2^s$, we have $\operatorname{ord}(b) < \operatorname{ord}(z) = 2^s = 2^k$.

Termination proof (cont.)

Now, on each iteration, line 8 sets $m = \operatorname{ord}(b)$ and line 9 sets $t = z^{2^{k-m-1}} \mod p$, so

$$\operatorname{ord}(t) = \frac{\operatorname{ord}(z)}{2^{k-m-1}} = \frac{2^k}{2^{k-m-1}} = 2^{m+1}.$$

Line 10 sets $z = t^2$, so $\operatorname{ord}(z) = \operatorname{ord}(t)/2 = 2^m$.

After line 11, $\operatorname{ord}(b) < 2^m$. This because the old value of b and the new value of z both have order 2^m . Hence, both of those numbers raised to the power 2^{m-1} are $-1 \pmod{p}$, so their product (the new value of b) raised to that same power is $(-1)^2 \equiv 1$.

Line 13 sets k = m in preparation for the next iteration, and the loop invariant $ord(b) < ord(z) = 2^k$ is maintained. Moreover, ord(b) is reduced at each iteration, so the loop must terminate after at most *s* iterations.

Quadratic residues modulo n = pq

Let n = pq, p, q distinct odd primes.

We divide the numbers in ${\bf Z}_n^*$ into four classes depending on their membership in ${\rm QR}_p$ and ${\rm QR}_q.^3$

Under these definitions,

$$QR_n = Q_n^{11}$$

$$\mathrm{QNR}_n = Q_n^{00} \cup Q_n^{01} \cup Q_n^{10}$$

³To be strictly formal, we classify $a \in \mathbf{Z}_n^*$ according to whether or not $(a \mod p) \in QR_p$ and whether or not $(a \mod q) \in QR_q$.

Quadratic residuosity problem

Definition (Quadratic residuosity problem)

The *quadratic residuosity problem* is to decide, given $a \in Q_n^{00} \cup Q_n^{11}$, whether or not $a \in QR_n$.

Fact

There is no known feasible algorithm for solving the quadratic residuosity problem that gives the correct answer significantly more than 1/2 the time for uniformly distributed random $a \in Q_n^{00} \cup Q_n^{11}$.

Goldwasser-Micali probabilistic cryptosystem

The Goldwasser-Micali cryptosystem is based on the assumed hardness of the quadratic residuosity problem.

The public key consist of a pair e = (n, y), where n = pq for distinct odd primes p, q, and $y \in Q_n^{00}$. The private key consists of p. The message space is $\mathcal{M} = \{0, 1\}$. (Single bits!)

To encrypt $m \in \mathcal{M}$, Alice chooses a random $a \in QR_n$. She does this by choosing a random member of \mathbf{Z}_n^* and squaring it.

If m = 0, then $c = a \mod n \in Q_n^{11}$. If m = 1, then $c = ay \mod n \in Q_n^{00}$.

Hence, the problem of finding *m* given *c* is equivalent to the problem of testing if $c \in QR_n$, given that $c \in Q_n^{00} \cup Q_n^{11}$.

Decryption in Goldwasser-Micali encryption

Bob, knowing the private key p, can use the Euler Criterion to quickly determine whether or not $c \in QR_p$ and hence whether $c \in Q_n^{11}$ or $c \in Q_n^{00}$, thereby determining m.

Eve's problem of determining whether c encrypts 0 or 1 is the same as the problem of distinguishing between membership in Q_n^{00} and Q_n^{11} , which is just the quadratic residuosity problem, assuming the ciphertexts are uniformly distributed.

One can show that every element of Q_n^{11} is equally likely to be chosen as the ciphertext c in case m = 0, and every element of Q_n^{00} is equally likely to be chosen as the ciphertext c in case m = 1. If the messages are also uniformly distributed, then any element of $Q_n^{00} \cup Q_n^{11}$ is equally likely to be the ciphertext.