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Quadratic Residues
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Important facts about quadratic residues (review)

1 If p is odd prime, then |QRp| = 2, and for each a ∈ QRp,
|
√

a| = 2.

2 If n = pq, p 6= q odd primes, then |QRn| = 4, and for each
a ∈ QRn, |

√
a| = 4.

3 Euler criterion: a ∈ QRp iff a(p−1)/2 ≡ 1 (mod p), p odd
prime.

4 If n is odd prime, a ∈ QRn, can feasibly find y ∈
√

a.

5 If n = pq, p 6= q odd primes, then distinguishing Q00
n from

Q11
n is believed to be infeasible. Hence, infeasible to find

y ∈
√

a. Why?

If not, one could attempt to find y ∈
√

a, check that y2 ≡ a
(mod n), and conclude that a ∈ Q11 if successful.
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Legendre symbol

Let p be an odd prime, a an integer. The Legendre symbol
(

a
p

)
is

a number in {−1, 0,+1}, defined as follows:

(
a

p

)
=


+1 if a is a non-trivial quadratic residue modulo p

0 if a ≡ 0 (mod p)
−1 if a is not a quadratic residue modulo p

By the Euler Criterion, we have

Theorem

Let p be an odd prime. Then(
a

p

)
≡ a( p−1

2 ) (mod p)

Note that this theorem holds even when p |a.
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Properties of the Legendre symbol

The Legendre symbol satisfies the following multiplicative property:

Fact

Let p be an odd prime. Then(
a1a2

p

)
=

(
a1

p

) (
a2

p

)
Not surprisingly, if a1 and a2 are both non-trivial quadratic
residues, then so is a1a2. Hence, the fact holds when(

a1

p

)
=

(
a2

p

)
= 1.
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Product of two non-residues

Suppose a1 6∈ QRp, a2 6∈ QRp. The above fact asserts that the
product a1a2 is a quadratic residue since(

a1a2

p

)
=

(
a1

p

) (
a2

p

)
= (−1)(−1) = 1.

Here’s why.

Let g be a primitive root of p.

Write a1 ≡ gk1 (mod p) and a2 ≡ gk2 (mod p).

Both k1 and k2 are odd since a1, a2 6∈ QRp.

But then k1 + k2 is even.

Hence, g (k1+k2)/2 is a square root of a1a2 ≡ gk1+k2 (mod p),
so a1a2 is a quadratic residue.
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The Jacobi symbol

The Jacobi symbol extends the Legendre symbol to the case where
the “denominator” is an arbitrary odd positive number n.

Let n be an odd positive integer with prime factorization
∏k

i=1 pi
ei .

We define the Jacobi symbol by

(a

n

)
=

k∏
i=1

(
a

pi

) ei

(1)

The symbol on the left is the Jacobi symbol, and the symbol on
the right is the Legendre symbol.

(By convention, this product is 1 when k = 0, so
(

a
1

)
= 1.)

The Jacobi symbol extends the Legendre symbol since the two
definitions coincide when n is an odd prime.
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Meaning of Jacobi symbol

What does the Jacobi symbol mean when n is not prime?

If
(

a
n

)
= +1, a might or might not be a quadratic residue.

If
(

a
n

)
= 0, then gcd(a, n) 6= 1.

If
(

a
n

)
= −1 then a is definitely not a quadratic residue.
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Jacobi symbol = +1 for n = pq

Let n = pq for p, q distinct odd primes. Since(a

n

)
=

(
a

p

) (
a

q

)
(2)

there are two cases that result in
(

a
n

)
= 1:

1

(
a
p

)
=
(

a
q

)
= +1, or

2

(
a
p

)
=
(

a
q

)
= −1.
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Case of both Jacobi symbols = +1

If
(

a
p

)
=
(

a
q

)
= +1, then a ∈ QRp ∩QRq = Q11

n .

It follows by the Chinese Remainder Theorem that a ∈ QRn.

This fact was implicit last lecture in the proof that |
√

a| = 4.
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Details

Let b ∈
√

a modulo p and let c ∈
√

a modulo q. Then

a ≡ b2 (mod p) (3)

a ≡ c2 (mod q) (4)

By the Chinese Remainder Theorem, exists unique d ∈ Zn

d ≡ b (mod p) (5)

d ≡ c (mod q) (6)

Squaring (5) and (6) and combining with (3) and (4) gives

d2 ≡ a (mod p) (7)

d2 ≡ a (mod q) (8)

Hence, d2 ≡ a (mod n), so a is a quadratic residue modulo n.
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Case of both Jacobi symbols = −1

If
(

a
p

)
=
(

a
q

)
= −1, then a ∈ QNRp ∩QNRq = Q00

n .

In this case, a is not a quadratic residue modulo n.

Such numbers a are sometimes called “pseudo-squares” since they
have Jacobi symbol 1 but are not quadratic residues.
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Computing the Jacobi symbol

The Jacobi symbol
(

a
n

)
is easily computed from its definition

(equation 1) and the Euler Criterion, given the factorization of n.

Similarly, gcd(u, v) is easily computed without resort to the
Euclidean algorithm given the factorizations of u and v .

The remarkable fact about the Euclidean algorithm is that it lets
us compute gcd(u, v) efficiently, without knowing the factors of u
and v .

A similar algorithm allows us to compute the Jacobi symbol
(

a
n

)
efficiently, without knowing the factorization of a or n.
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Identities involving the Jacobi symbol

The algorithm is based on identities satisfied by the Jacobi symbol:

1
(

0
n

)
=

{
1 if n = 1
0 if n 6= 1;

2
(

2
n

)
=

{
1 if n ≡ ±1 (mod 8)
−1 if n ≡ ±3 (mod 8);

3
(

a1
n

)
=
(

a2
n

)
if a1 ≡ a2 (mod n);

4
(

2a
n

)
=
(

2
n

)
·
(

a
n

)
;

5
(

a
n

)
=

{ (
n
a

)
if a, n odd and ¬(a ≡ n ≡ 3 (mod 4))

−
(

n
a

)
if a, n odd and a ≡ n ≡ 3 (mod 4).
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A recursive algorithm for computing Jacobi symbol

/* Precondition: a, n >= 0; n is odd */
int jacobi(int a, int n) {
if (a == 0) /* identity 1 */
return (n==1) ? 1 : 0;

if (a == 2) /* identity 2 */
switch (n%8) {
case 1: case 7: return 1;
case 3: case 5: return -1;
}

if ( a >= n ) /* identity 3 */
return jacobi(a%n, n);

if (a%2 == 0) /* identity 4 */
return jacobi(2,n)*jacobi(a/2, n);

/* a is odd */ /* identity 5 */
return (a%4 == 3 && n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);

}
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Useful Tests of Compositeness
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Solovay-Strassen compositeness test

Recall that a test of compositeness for n is a set of predicates
{τa(n)}a∈Z∗n such that if τ(n) succeeds (is true), then n is
composite.

The Solovay-Strassen Test is the set of predicates {νa(n)}a∈Z∗n ,
where

νa(n) = true iff
(a

n

)
6≡ a(n−1)/2 (mod n).

If n is prime, the test always fails by the Euler Criterion.
Equivalently, if some νa(n) succeeds for some a, then n must be
composite.

Hence, the test is a valid test of compositeness.
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Usefulness of Strassen-Solovay test

Let b = a(n−1)/2. The Strassen-Solovay test succeeds if
(

a
n

)
6≡ b

(mod n). There are two ways they could fail to be equal:

1 b2 ≡ an−1 6≡ 1 (mod n).
In this case, b 6≡ ±1 (mod n). This is just the Fermat test
ζa(n) from Lecture 11.

2 b2 ≡ an−1 ≡ 1 (mod n) but b 6≡
(

a
n

)
(mod n).

In this case, b ∈
√

1 (mod n), but b might have the opposite
sign from

(
a
n

)
, or it might not even be ±1 since 1 has

additional square roots when n is composite.

Strassen and Solovay show the probability that νa(n) succeeds for
a randomly-chosen a ∈ Z∗n is at least 1/2 when n is composite.1

Hence, the Strassen-Solovay test is a useful test of compositeness.

1R. Solovay and V. Strassen, “A Fast Monte-Carlo Test for Primality”,
SIAM J. Comput. 6:1 (1977), 84–85.
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Miller-Rabin test – an overview

The Miller-Rabin Test is more complicated to describe than the
Solovay-Strassen Test, but the probability of error (that is, the
probability that it fails when n is composite) seems to be lower.

Hence, the same degree of confidence can be achieved using fewer
iterations of the test. This makes it faster when incorporated into
a primality-testing algorithm.

This test is closely related to the algorithm from Lecture 11 for
factoring an RSA modulus given the encryption and decryption
keys and to Shanks Algorithm given in Lecture 13 for computing
square roots modulo an odd prime.
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Miller-Rabin test

The Miller-Rabin test µa(n) computes a sequence b0, b1, . . . , bs in
Z∗n. The test succeeds if bs 6≡ 1 (mod n) or the last non-1 element
exists and is 6≡ −1 (mod n).

The sequence is computed as follows:

1 Write n − 1 = 2st, where t is an odd positive integer.

2 Let b0 = at mod n.

3 For i = 1, 2, . . . , s, let bi = (bi−1)2 mod n.

An easy inductive proof shows that bi = a2i t mod n for all i ,
0 ≤ i ≤ s. In particular, bs ≡ a2s t = an−1 (mod n).

Michael J. Fischer CPSC 467b, Lecture 14 21/34



Outline Quadratic residues Useful tests Digital Signatures Solovay-Strassen Miller-Rabin

Validity of the Miller-Rabin test

The Miller-Rabin test fails when either every bk ≡ 1 (mod n) or
for some k , bk−1 ≡ −1 (mod n) and bk ≡ 1 (mod n).

To show validity, we show that µa(n) fails for all a ∈ Z∗n when n is
prime.

By Euler’s theorem, bs ≡ an−1 ≡ 1 (mod n).

Since
√

1 = {1,−1} and bi−1 is a square root of bi for all i , either
all bk ≡ 1 (mod n) or the last non-1 element in the sequence
bk−1 ≡ −1 (mod p).

Hence, the test fails whenever n is prime, so µa(n) is a valid test of
compositeness.
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Usefulness of Miller-Rabin test

The Miller-Rabin test succeeds whenever an−1 6≡ 1 (mod n), so it
succeeds whenever the Fermat test ζa(n) would succeed.

But even when an−1 ≡ 1 (mod n), the Miller-Rabin test succeeds
if the last non-1 element in the sequence of b’s is one of the two
square roots of 1 that differ from ±1.

It can be proved that µa(n) succeeds for at least 3/4 of the possible
values of a. Empirically, the test almost always succeeds when n is
composite, and one has to work to find a such that µa(n) fails.
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Example of Miller-Rabin test

For example, take n = 561 = 3 · 11 · 17, the first Carmichael
number. Recall that a Carmichael number is an odd composite
number n that satisfies an−1 ≡ 1 (mod n) for all a ∈ Z∗n.
Let’s go through the steps of computing µ37(561).

We begin by finding t and s.
561 in binary is 1000110001 (a palindrome!).
Then n − 1 = 560 = (1000110000)2, so s = 4 and
t = (100011)2 = 35.
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Example (cont.)

We compute b0 = at = 3735 mod 561 = 265 with the help of the
computer.
We now compute the sequence of b’s, also with the help of the
computer. The results are shown in the table below:

b0 = 265
b1 = 100
b2 = 463
b3 = 67
b4 = 1

This sequence ends in 1, but the last non-1 element b3 6≡ −1
(mod 561), so the test µ37(561) succeeds. In fact, the test
succeeds for every a ∈ Z∗561 except for a = 1, 103, 256, 460, 511.
For each of those values, b0 = at ≡ 1 (mod 561).
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Optimizations

In practice, one computes only as many b’s as are necessary to
determine whether or not the test succeeds.

One can stop after finding bi such that bi ≡ ±1 (mod n).

If bi ≡ −1 (mod n) and i < s, the test fails.

If bi ≡ 1 (mod n) and i ≥ 1, the test succeeds.

In this case, we know that bi−1 6≡ ±1 (mod n), for otherwise
the algorithm would have stopped after computing bi−1.
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Digital Signatures
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Overview of digital signatures

A digital signature is a string attached to a message used to
guarantee the integrity and authenticity of the message.

It is a public-key analog to the private-keyed message
authentication codes (MACs) discussed in lecture 7.

Recall that Alice can protect a message m (encrypted or not)
by attaching a MAC ξ = Ck(m) to the message m.

The pair (m, ξ) is an authenticated message.

To produce a MAC requires possession of the secret key k .

To verify integrity and authenticity, Bob, who also must know
k, checks a received pair (m′, ξ′) by verifying that
ξ′ = Ck(m′). Assuming Alice and Bob are the only parties
who share k , then Bob knows that m′ came from Alice.
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Digital signature scheme

A digital signature can be viewed as a 2-key MAC, just as a public
key cryptosystem is a 2-key version of a classical cryptosystem.

Let M be a message space and S a signature space.

A signature scheme consists of a private signing key d , a public
verification key e, a signature function Sd :M→ S, and a
verification predicate Ve ⊆M×S.2

A signed message is a pair (m, s) ∈M× S. A signed message is
valid if Ve(m, s) holds, and we say that (m, s) is signed with e.

2As with RSA, we denote the private component of the key pair by the
letter d and the public component by the letter e, although they no longer
have same mnemonic significance.
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Fundamental property of a signature scheme

Basic requirement:

The signing function always produces a valid signature, that is,

Ve(m,Sd(m)) (9)

holds for all m ∈M.

Assuming e is Alice’s public verification key, and only Alice knows
the corresponding signing key d , then a signed message (m, s) that
is valid under e identifies Alice with m (possibly erroneously, as we
shall see).
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RSA digital signature scheme

RSA can be used for digital signatures as follows:

Alice generates an RSA modulus n and key pair (e, d), where
e is public and d private as usual.

Let Sd(m) = Dd(m), and let Ve(m, s) hold iff m = Ee(s).

Must verify that Ve(m,Sd(m)) hold for all messages m, i.e.,
must check that m = Ee(Dd(m)) holds.

This is the reverse of the condition we required for RSA to be
a valid cryptosystem, viz. Dd(Ee(m)) for all m ∈ Zm.

RSA satisfies both conditions since

m ≡ Dd(Ee(m)) ≡ (me)d ≡ (md)e ≡ Ee(Dd(m)) (mod n).
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Commutative cryptosystems

A cryptosystem with this property that Dd ◦ Ee = Ee ◦ Dd is said
to be commutative, where “◦” denotes functional composition.

Indeed, any commutative public key cryptosystem can be used for
digital signatures in exactly this same way as we did for RSA.
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Signatures from non-commutative cryptosystems

We digress slightly and ask what we could do in case Ee and Dd

did not commute.

One could define Se(m) = Ee(m) and Ve(m, s)⇔ m = Dd(s).
Now indeed every validly-signed message (m,Se(m)) would verify
since Dd(Ee(m)) = m is the basic property of a cryptosystem.

To make use of this scheme, Alice would have to keep e private
and make d public. Assuming Alice generated the key pair in the
first place, there is nothing preventing her from doing this.
However, the resulting system might not be secure.

Even if it is hard for Eve to find d from e, it might not be hard to
find e from d .
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Interchanging public and private keys

For RSA, it is just as hard to find e from d as it is to find d from e.
That’s because RSA is completely symmetric in e and d .
Not all cryptosystems enjoy this symmetry property.

For example, the ElGamal scheme discussed in Lecture 12 is based
on the equation b = g y (mod p), where y is private and b public.

Finding y from b is the discrete log problem — believed to be hard.

Finding b from y , is straightforward, so the roles of public and
private key cannot be interchanged while preserving security.3

3However, ElGamal found a different way to use the ideas of discrete
logarithm to build a signature scheme, which we will discuss later.
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