
Outline Digital Signatures Hash Functions

CPSC 467b: Cryptography and Computer Security
Lecture 15

Michael J. Fischer

Department of Computer Science
Yale University

March 3, 2010

Michael J. Fischer CPSC 467b, Lecture 15 1/37

Outline Digital Signatures Hash Functions

1 Digital Signatures
Security of digital signatures
Random Messages
Implications of Digital Signatures

2 Message Digest Functions

Michael J. Fischer CPSC 467b, Lecture 15 2/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Digital Signatures (continued)

Michael J. Fischer CPSC 467b, Lecture 15 3/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Desired security properties of digital signatures

Digital signatures must be difficult to forge.

Some increasingly stringent notions of forgery-resistance:

Resistance to forging valid signature for particular message m.

Above, but where adversary knows a set of valid signed
messages (m1, s1), . . . , (mk , sk), and m 6∈ {m1, . . . ,mk}.
Above, but where adversary can choose a set of valid signed
messages, specifying either the messages (corresponding to a
chosen plaintext attack) or the signatures (corresponding to
chosen ciphertext attack).

Any of the above, but where one wishes to protect against
generating any valid signed message (m′, s ′) different from
those already seen, not just for a particular predetermined m.

Michael J. Fischer CPSC 467b, Lecture 15 4/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Forging random signed messages

RSA signatures are indeed vulnerable to forgery of random signed
messages.

An attacker simply generates chooses s ′ at random and computes
m′ = Ee(s ′).

The signed message (m′, s ′) is trivially valid since the verification
predicate is simply m′ = Ee(s ′).

Michael J. Fischer CPSC 467b, Lecture 15 5/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Importance of random signed messages

One often wants to sign random strings.
The ability of an attacker to generate valid random signed
messages is a real drawback for certain practical applications.

For example, in the Diffie-Hellman key exchange protocol discussed
in Lecture 12, Alice and Bob exchange random-looking numbers
a = g x mod p and b = g y mod p.

In order to discourage man-in-the-middle attacks, they may wish to
sign these strings. (This assumes that they already have each
other’s public signature verification keys.)

However, Mallory could feed bogus signed values a′ and b′ to Bob
and Alice, respectively. The signatures would check, and both
would think they had successfully established a shared key k when
in fact they had not.

Michael J. Fischer CPSC 467b, Lecture 15 6/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Adding redundancy

One way to defeat the adversary’s ability to generate valid random
signed messages is to put redundancy into the message, for
example, by prefixing a fixed string σ to the front of each message
before signing it.

Instead of taking Sd(m) = Dd(m), one could take

Sd(m) = Dd(σm).

The corresponding verification predicate would then be

Ve(m, s)⇔ σm = Ee(s).

Michael J. Fischer CPSC 467b, Lecture 15 7/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Security of signatures with fixed redundancy

The security of this scheme depends on the mixing properties of
the encryption and decryption functions, that is, that each output
bit depends on all of the input bits.

Not all cryptosystems have this mixing property.

For example, a block cipher used in ECB mode (see lectures 3
and 5) encrypts a block at a time, so each block of output bits
depends only on the corresponding block of input bits.

Michael J. Fischer CPSC 467b, Lecture 15 8/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Forging signatures

Suppose it happens that

Sd(m) = Dd(σm) = Dd(σ) · Dd(m).

Then Mallory can forge random messages assuming he knows just
one valid signed message (m0, s0). Here’s how.

He knows that s0 = Dd(σ) ·Dd(m), so from s0 he extracts the
prefix s00 = Dd(σ).

He now chooses a random s ′01 and computes m′ = Ee(s ′01)
and s ′ = s00 · s ′01.

The signed message (m′, s ′) is valid since
Ee(s ′) = Ee(s00 · s ′01) = Ee(s00) · Ee(s ′01) = σm′.

Michael J. Fischer CPSC 467b, Lecture 15 9/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Signing message digests

A better way to prevent forgery is to sign a message digest of the
message rather than sign m itself.

A message digest function h, also called a cryptographic one-way
hash function or a fingerprint function, maps long strings to short
random-looking strings.

To sign a message m, Alice computes Sd(m) = Dd(h(m)).

To verify the signature s, Bob checks that h(m) = Ee(s).

Michael J. Fischer CPSC 467b, Lecture 15 10/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Forging signed message digests

For Mallory to generate a forged signed message (m′, s ′) he must
somehow come up with m′ and s ′ satisfying

h(m′) = Ee(s ′) (1)

That is, he must find m′ and s ′ that both map to the same string,
where m′ is mapped by h and s ′ by Ee .

Two natural approaches for attempting to satisfying (1):

1 Pick m′ at random and solve for s ′.

2 Pick s ′ at random and solve for m′.

Michael J. Fischer CPSC 467b, Lecture 15 11/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Solving for s ′

Approach 1:
h(m′) = Ee(s ′) (1)

To solve for s ′ given m′ requires computing

E−1
e (h(m′)) = Dd(h(m′)) = s ′.

Alice can compute Dd , which is what enables her to sign messages.

But Mallory presumably cannot compute Dd without knowing d ,
so this approach doesn’t work.

Michael J. Fischer CPSC 467b, Lecture 15 12/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Solving for m′

Approach 2:
h(m′) = Ee(s ′) (1)

To solve for m′ given s ′ requires “inverting” h.

Since h is many-one, a value y = Ee(s ′) can have many “inverses”
or preimages.

To successfully forge a signed message, Mallory needs to find only
one value m′ such that h(m′) = Ee(s ′).

However, the defining property of a cryptographic hash function is
that, given y , it should be hard to find any x ∈ h−1(y).

Hence, Mallory cannot feasibly find m′ satisfying 1.

Michael J. Fischer CPSC 467b, Lecture 15 13/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Other attempts

Of course, these are not the only two approaches that Mallory
might take.

Perhaps there are ways of generating valid signed messages (m′, s ′)
where m′ and s ′ are generated together.

I do not know of such a method, but this doesn’t say one doesn’t
exist.

Michael J. Fischer CPSC 467b, Lecture 15 14/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

More advantages of signing message digests

Another advantage of signing message digests rather than signing
messages directly: the signatures are shorter.

An RSA signature of m is roughly the same length as m.

An RSA signature of h(m) is a fixed length, regardless of how long
m is.

For both reasons of security and efficiency, signed message digests
are what is used in practice.

We’ll talk more about message digests later on.

Michael J. Fischer CPSC 467b, Lecture 15 15/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

What does a digital signature imply?

We like to think of a digital signature as a digital analog to a
conventional signature.

A conventional signature binds a person to a document.
Barring forgery, a valid signature indicates that a particular
individual performed the action of signing the document.

A digital signature binds a signing key to a document. Barring
forgery, a valid digital signature indicates that a particular
signing key was used to sign the document.

However, there is an important difference. A digital signature only
binds the signing key to the document.

Other considerations must be used to bind the individual to the
signing key.

Michael J. Fischer CPSC 467b, Lecture 15 16/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Disavowal

An individual can always disavow a signature on the grounds that
the private signing key has become compromised.

Here are two ways that this can happen.

Her signing key might be copied, perhaps by keystroke
monitors or other forms of spyware that might have infected
her computer, or a stick memory or laptop containing the key
might be stolen.

She might deliberately publish her signing key for the express
purpose of relinquishing responsibility for documents signed by
it.

For both of these reasons, one cannot conclude without a
reasonable doubt that a digitally signed document was indeed
signed by the purported holder of the signing key.

Michael J. Fischer CPSC 467b, Lecture 15 17/37

Outline Digital Signatures Hash Functions Security Random Messages Implications

Practical usefulness of digital signatures

This isn’t to say that digital signatures aren’t useful; only that they
have significantly different properties than conventional signatures.

In particular, they are subject to disavowal by the signer in a way
that conventional signatures are not.

Nevertheless, they are still very useful in situations where disavowal
is not a problem.

Michael J. Fischer CPSC 467b, Lecture 15 18/37

Outline Digital Signatures Hash Functions

Message Digest Functions

Michael J. Fischer CPSC 467b, Lecture 15 19/37

Outline Digital Signatures Hash Functions

Message digest function

Let M be a message space and H a hash value space, and assume
|M| � |H|.

A message digest (or cryptographic one-way hash or fingerprint)
function h maps M→H.

A collision is a pair of messages m1,m2 such that h(m1) = h(m2),
and we say that m1 and m2 collide.

Because |M| � |H|, h is very far from being one-to-one, and there
are many colliding pairs. Nevertheless, it should be hard for an
adversary to find collisions.

Michael J. Fischer CPSC 467b, Lecture 15 20/37

Outline Digital Signatures Hash Functions

Collision-avoidance properties

We consider three increasingly strong versions of what it means to
be hard to find collisions:

One-way property: Given y ∈ H, it is hard to find m ∈M such
that h(m) = y .

Weak collision-free property: Given m ∈M, it is hard to find
m′ ∈M such that m′ 6= m and h(m′) = h(m).

Strong collision-free property: It is hard to find colliding pairs
(m,m′). (What does this mean in a
complexity-theoretic sense?)

These definitions are rather vague, for they ignore issues of what
we mean by “hard” and “find”.

Michael J. Fischer CPSC 467b, Lecture 15 21/37

Outline Digital Signatures Hash Functions

What does “hard” mean?

Intuitively, “hard” means that Mallory cannot carry out the
computation in a feasible amount of time on a realistic computer.

Michael J. Fischer CPSC 467b, Lecture 15 22/37

Outline Digital Signatures Hash Functions

What does “find” mean?

The term “find” may mean

“always produces a correct answer”, or

“produces a correct answer with high probability”, or

“produces a correct answer on a significant number of
possible inputs with non-negligible probability”.

The latter notion of “find” says that Mallory every now and then
can break the system. For any given application, there is a
maximum acceptable rate of error, and we must be sure that our
cryptographic system meets that requirement.

Michael J. Fischer CPSC 467b, Lecture 15 23/37

Outline Digital Signatures Hash Functions

One-way function

What does it mean for h to be one-way?

Intuitively, this means that no probabilistic polynomial time
algorithm Ah(y) produces a pre-image m of y under h with more
than negligible probability of success.

This is only required for random y chosen according to a particular
hash value distribution. There might be particular values of y on
which Ah has non-negligible success probability.

The hash value distribution we have in mind is the one induced by
h applied to uniformly distributed m ∈M.

The probability of y is proportional to |h−1(y)|.

This means that h can be considered one-way even though
algorithms do exist that succeed on low-probability subsets of H.

Michael J. Fischer CPSC 467b, Lecture 15 24/37

Outline Digital Signatures Hash Functions

Constructing one hash function from another

The following example might help clarify these ideas.

Let h(m) be a cryptographic hash function that produces hash
values of length n. Define a new hash function H(m) as follows:

H(m) =

{
0 ·m if |m| = n
1 · h(m) otherwise.

Thus, H produces hash values of length n + 1.

H(m) is clearly collision-free since the only possible collisions
are for m’s of lengths different from n.

Any colliding pair (m,m′) for H is also a colliding pair for h.

Since h is collision-free, then so is H.

Michael J. Fischer CPSC 467b, Lecture 15 25/37

Outline Digital Signatures Hash Functions

H is one-way

Not so obvious is that H is one-way.

This is true, even though H can be inverted for 1/2 of all possible
hash values y , namely, those that begin with 0.

The reason this doesn’t violate the definition of one-wayness is
that only 2n values of m map to hash values that begin with 0,
and all the rest map to values that begin with 1.

Since we are assuming |M| � |H|, the probability that a uniformly
sampled m ∈M has length exactly n is small.

Michael J. Fischer CPSC 467b, Lecture 15 26/37

Outline Digital Signatures Hash Functions

Strong implies weak collision-free

There are some obvious relationships between properties of hash
functions that can be made precise once the underlying definitions
are made similarly precise.

Fact

If h is strong collision-free, then h is weak collision-free.

Michael J. Fischer CPSC 467b, Lecture 15 27/37

Outline Digital Signatures Hash Functions

Proof that strong ⇒ weak collision-free

Proof (Sketch).

Suppose h is not weak collision-free. We show that it is not strong
collision-free by showing how to enumerate colliding message pairs.

The method is straightforward:

Pick a random message m ∈M.

Try to find a colliding message m′.

If we succeed, then output the colliding pair (m,m′).

If not, try again with another randomly-chosen message.

Since h is not weak collision-free, we will succeed on a significant
number of the messages, so we will succeed in generating a
succession of colliding pairs.

Michael J. Fischer CPSC 467b, Lecture 15 28/37

Outline Digital Signatures Hash Functions

Speed of finding colliding pairs

How fast the pairs are enumerated depends on how often the
algorithm succeeds and how fast it is.

These parameters in turn may depend on how large M is relative
to H.

It is always possible that h is one-to-one on some subset U of
elements in M, so it is not necessarily true that every message has
a colliding partner.

However, an easy counting argument shows that U has size at
most |H| − 1.

Since we assume |M| � |H|, the probability that a
randomly-chosen message from M lies in U is correspondingly
small.

Michael J. Fischer CPSC 467b, Lecture 15 29/37

Outline Digital Signatures Hash Functions

Strong implies one-way

In a similar vein, we argue that strong collision-free implies
one-way.

Fact

If h is strong collision-free, then h is one-way.

Michael J. Fischer CPSC 467b, Lecture 15 30/37

Outline Digital Signatures Hash Functions

Proof that string Rightarrow one-way

Proof (Sketch).

Suppose h is not one-way. Then there is an algorithm A(y) for
finding m such that h(m) = y , and A(y) succeeds with significant
probability when y is chosen randomly with probability proportional
to the size of its preimage. Assume that A(y) returns ⊥ to
indicate failure.

The following randomized algorithm enumerates a sequence of
colliding pairs:

1. Choose random m.
2. Compute y = h(m).
3. Compute m′ = A(y).
4. If m′ 6∈ {⊥,m} then output (m,m′).
5. Start over at step 1.

Michael J. Fischer CPSC 467b, Lecture 15 31/37

Outline Digital Signatures Hash Functions

Proof (cont.)

Proof (continued).

Each iteration of this algorithm succeeds with significant
probability ε that is the product of the probability that A(y)
succeeds on y and the probability that m′ 6= m.

The latter probability is at least 1/2 except for those values m
which lie in the set of U of messages on which h is one-to-one
(defined in the previous proof).

Thus, assuming |M| � |H|, the algorithm outputs each colliding
pair in expected number of iterations that is only slightly larger
than 1/ε.

Michael J. Fischer CPSC 467b, Lecture 15 32/37

Outline Digital Signatures Hash Functions

Weak implies one-way

These same ideas can be used to show that weak collision-free
implies one-way, but now one has to be more careful with the
precise definitions.

Fact

If h is weak collision-free, then h is one-way.

Michael J. Fischer CPSC 467b, Lecture 15 33/37

Outline Digital Signatures Hash Functions

Proof that weak ⇒ one-way

Proof (Sketch).

Suppose as before that h is not one-way, so there is an algorithm
A(y) for finding m such that h(m) = y , and A(y) succeeds with
significant probability when y is chosen randomly with probability
proportional to the size of its preimage.

Assume that A(y) returns ⊥ to indicate failure. We want to show
this implies that the weak collision-free property does not hold, that
is, there is an algorithm that, for a significant number of m ∈M,
succeeds with non-negligible probability in finding a colliding m′.

Michael J. Fischer CPSC 467b, Lecture 15 34/37

Outline Digital Signatures Hash Functions

Proof (cont.)

Proof (continued).

We claim the following algorithm works:

Given input m:
1. Compute y = h(m).
2. Compute m′ = A(y).
3. If m′ 6∈ {⊥,m} then output (m,m′) and halt.
4. Otherwise, start over at step 1.

This algorithm fails to halt for m ∈ U, but the number of such m
is small (= insignificant) when |M| � |H|.

Michael J. Fischer CPSC 467b, Lecture 15 35/37

Outline Digital Signatures Hash Functions

Proof (cont.)

Proof (continued).

It may also fail even when a colliding partner m′ exists if it
happens that the value returned by A(y) is m. (Remember, A(y)
is only required to return some preimage of y ; we can’t say which.)

However, corresponding to each such bad case is another one in
which the input to the algorithm is m′ instead of m. In this latter
case, the algorithm succeeds, since y is the same in both cases.
With this idea, we can show that the algorithm succeeds in finding
a colliding partner on at least half of the messages in M− U.

Michael J. Fischer CPSC 467b, Lecture 15 36/37

Outline Digital Signatures Hash Functions

Towards greater rigor

Katz and Lindell present rigorous definitions for what it means for
collisions to be hard to find.

We’ll return to those definitions later in the course.

Michael J. Fischer CPSC 467b, Lecture 15 37/37

	Outline
	Digital Signatures
	Security of digital signatures
	Random Messages
	Implications of Digital Signatures

	Message Digest Functions

