
Outline Formalizing ZK Full FFS Non-I IP

CPSC 467b: Cryptography and Computer Security
Lecture 20

Michael J. Fischer

Department of Computer Science
Yale University

April 5, 2010

Michael J. Fischer CPSC 467b, Lecture 20 1/35



Outline Formalizing ZK Full FFS Non-I IP

1 Formalizing Zero Knowledge
Computational Knowledge
Composing Zero-Knowledge Proofs

2 Full Feige-Fiat-Shamir Authentication Protocol

3 Non-interactive Interactive Proofs
Feige-Fiat-Shamir Signatures

Michael J. Fischer CPSC 467b, Lecture 20 2/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

Formalizing Zero Knowledge

Michael J. Fischer CPSC 467b, Lecture 20 3/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

Computational Knowledge

Michael J. Fischer CPSC 467b, Lecture 20 4/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

What does Bob learn from Alice?

We have seen several examples of zero knowledge proofs but no
careful definition of what it means to be “zero knowledge”.

The intuition that “Bob learns nothing from Alice” surely isn’t
true.

After running the FFS protocol, for example, Bob learns the
quadratic residue x that Alice computed in the first step.

He didn’t know x before, nor did he and Alice know any quadratic
residues in common other than the public number v .

By zero knowledge, we want to capture the notion that Bob learns
nothing that might be useful in turning an intractable computation
into a tractable one.

Michael J. Fischer CPSC 467b, Lecture 20 5/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

A general client process for interacting with Alice

Consider an arbitrary algorithm for performing some computation,
i.e., suppose Mallory is trying to compute some function f (z).

We regard Mallory as a probabilistic Turing machine with input
tape and output tape.

z is placed on the input tape at the beginning.

If Mallory halts, the contents of the output tape is the answer.

Mallory can also play Bob’s role in some zero-knowledge
protocol, say FFS for definiteness.

During the computation, Mallory can read the number x that
Alice sends at the start of FFS.

Later, he can send a bit b to Alice.

Later still, he can read the response y from Alice.

After that, he computes and produces the answer, f (z).

Michael J. Fischer CPSC 467b, Lecture 20 6/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

A Mallory-simulator

A Mallory-simulator, whom we’ll call Sam, is a program like
Mallory except he is not on the internet and can’t talk to Alice.

Alice’s protocol is zero knowledge if for every Mallory, there is a
Mallory-simulator Sam that computes the same random function
f (z) as Mallory.

In other words, whatever Mallory does with the help of Alice, Sam
can do alone.

Michael J. Fischer CPSC 467b, Lecture 20 7/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

The logical connection with knowledge

If Mallory computes some function with Alice’s help (such as
writing a square root of v to the output tape), then Sam can also
do that without Alice’s help.

Under the assumption that taking square roots is hard, Sam
couldn’t do that; hence Mallory also couldn’t do that, even after
talking with Alice.

We conclude that Alice doesn’t release information that would help
Mallory to compute her secret; hence her secret is secure.

Michael J. Fischer CPSC 467b, Lecture 20 8/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

Constructing a simulator

To show a particular interactive protocol is zero knowledge, it is
necessary to show how to construct Sam for an arbitrary program
Mallory.

Here’s a sketch of how to generate a triple (x , b, y) for the FFS
protocol.

b = 0: Sam generates x and y the same way Alice does—by
taking x = r2 mod n and y = r mod n.

b = 1: Sam chooses y at random and computes
x = y2v mod n.

What he can’t do (without knowing Alice’s secret) is to generate
both triples for the same value x .

Michael J. Fischer CPSC 467b, Lecture 20 9/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

A simulator for FFS

Here’s the code for Sam:

1. Choose a random value b̂ ∈ {0, 1}.
2. Generate a valid random triple (x , b̂, y).
3. Simulate Mallory until he requests a value from Alice.

Pretend that Alice sent him x and continue.
4. Continue simulating Mallory until he is about to send a

value b to Alice.

5. If b 6= b̂, go back to step 1. Otherwise, continue.
6. Continue simulating Mallory until he requests another

value from Alice. Pretend that Alice sent him y and
continue.

7. Continue simulating Mallory until he halts.

Michael J. Fischer CPSC 467b, Lecture 20 10/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

Properties of the simulator

The probability that b = b̂ in step 5 is 1/2; hence, the expected
number of times Sam executes lines 1–4 is only 2.

Sam outputs the same answers as Mallory with the same
probability distribution. Requires some work to show.

Hence, the FFS protocol is zero knowledge.

Note that this proof depends on Sam’s ability to generate triples of
both kinds without knowing Alice’s secret.

Michael J. Fischer CPSC 467b, Lecture 20 11/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

Composing Zero-Knowledge Proofs

Michael J. Fischer CPSC 467b, Lecture 20 12/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

Serial composition

One round of the simplified FFS protocol has probability 0.5 of
error. That is, Mallory can fool Bob half the time.

This is unacceptably high for most applications.

Repeating the protocol t times reduces error probability to 1/2t .

Taking t = 20, for example, reduces the probability of error to less
than on in a million.

The downside of such serial repetition is that it also requires t
round trip messages between Alice and Bob (plus a final message
from Alice to Bob).

Michael J. Fischer CPSC 467b, Lecture 20 13/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

Parallel composition of zero-knowledge proofs

One could run t executions of the protocol in parallel.

Let (xi , bi , yi ) be the messages exchanged during the i th execution
of the simplified FFS protocol, 1 ≤ i ≤ t.

In a parallel execution,

Alice sends (x1, . . . , xt) to Bob,

Bob sends (b1, . . . , bt) to Alice,

Alice sends (y1, . . . , yt) to Bob,

Bob checks the t sets of values he has received and accepts
only if all checks pass.

Michael J. Fischer CPSC 467b, Lecture 20 14/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

Simulation proof does not extend to parallel execution

A parallel execution is certainly attractive in practice, for it reduces
the number of round-trip messages to only 11

2 .

The downside is that the resulting protocol may not be zero
knowledge by our definition.

Intuitively, the important difference is that Bob gets to know all of
the xi ’s before choosing the bi ’s.

Michael J. Fischer CPSC 467b, Lecture 20 15/35



Outline Formalizing ZK Full FFS Non-I IP Computational Knowledge Composing ZK

Problem extending the simulator to the parallel case

While it seems implausible that this would actually help a cheating
Bob to compromise Alice secret, the simulation proof used to show
that a protocol is zero knowledge no longer works.

To extend the simulator construction to the parallel composition:

First Sam would have to guess (b̂1, . . . b̂t).

He would construct the xi ’s and yi ’s as before.

When Mallory’s program reaches the point that Mallory
generates the bi ’s, the chance is very high that Sam’s initial
guesses were wrong and he will be forced to start over again.
Indeed, the probability that all t initial guesses are correct is
only 1/2t .

Michael J. Fischer CPSC 467b, Lecture 20 16/35



Outline Formalizing ZK Full FFS Non-I IP

Full Feige-Fiat-Shamir Authentication

Protocol

Michael J. Fischer CPSC 467b, Lecture 20 17/35



Outline Formalizing ZK Full FFS Non-I IP

Full FFS overview

The full Feige-Fiat-Shamir Authentication Protocol combines ideas
of serial and parallel execution to get a protocol that exhibits some
of the properties of both.

A Blum prime is a prime p such that p ≡ 3 (mod 4).

A Blum integer is a number n = pq, where p and q are Blum
primes.

If p is a Blum prime, then −1 ∈ QNRp, so
(
−1
p

)
= −1. This

follows from the Euler criterion, since p−1
2 is odd, so

(−1)
p−1

2 =

(
−1

p

)
= −1.

If n is a Blum integer, then −1 ∈ QNRn but
(−1

n

)
= 1.

Michael J. Fischer CPSC 467b, Lecture 20 18/35



Outline Formalizing ZK Full FFS Non-I IP

Square roots of Blum integers

Let n = pq be a Blum integer and a ∈ QRn. Exactly one of a’s
four square roots modulo n is a quadratic residue.

Consider Z∗
p and Z∗

q. a ∈ QRp and a ∈ QRq.

Let {b,−b} =
√

a (mod p) and apply the Euler Criterion to both.
Since

(−1)(p−1)/2 = −1 and b(p−1)/2 ∈ {±1},

then either b(p−1)/2 = 1 or (−b)(p−1)/2 = 1.
Hence, either b ∈ QRp or −b ∈ QRp. Call that number bp.

Similarly, one of the square roots of a (mod q) is in QRq, say bq.

Applying the Chinese Remainder Theorem, it follows that exactly
one of a’s four square roots modulo n is a quadratic residue.

Michael J. Fischer CPSC 467b, Lecture 20 19/35



Outline Formalizing ZK Full FFS Non-I IP

Full FFS key generation

Here’s how Alice generates the public and private keys of the full
FFS protocol.

She chooses a Blum integer n.

She chooses random numbers s1, . . . , sk ∈ Z∗
n and random bits

c1, . . . , ck ∈ {0, 1}.
She computes vi = (−1)ci s−2

i mod n, for i = 1, . . . , k.

She makes (n, v1, . . . , vk) public and keeps (n, s1, . . . , sk)
private.

Notice that every vi is either a quadratic residue or the negation of
a quadratic residue.

It is easily shown that all of the vi have Jacobi symbol 1 modulo n.

Michael J. Fischer CPSC 467b, Lecture 20 20/35



Outline Formalizing ZK Full FFS Non-I IP

One round of the full FFS authentication protocol.

A round of the protocol itself is shown below. The protocol is
repeated for a total of t rounds.

Alice Bob

1. Choose random
r ∈ Zn−{0}, c ∈ {0, 1}.
x = (−1)c r2 mod n

x−→.
2. Choose random

b1,...,bk←− b1, . . . , bk ∈ {0, 1}.
3. y = rsb1

1 · · · s
bk
k mod n.

y−→
4. z = y2vb1

1 · · · v
bk
k mod n.

Check z ≡ ±x (mod n)
and z 6= 0.

Michael J. Fischer CPSC 467b, Lecture 20 21/35



Outline Formalizing ZK Full FFS Non-I IP

Correctness of full FFS authentication protocol

When both Alice and Bob are honest, Bob computes

z = r2(s2b1
1 · · · s2bk

k )(vb1
1 · · · v

bk
k ) mod n.

Since vi = (−1)ci s−2
k , it follows that s2

i vi = (−1)ci . Hence,

z ≡ r2(s2
1v1)b1 · · · (s2

kvk)bk

≡ x(−1)c(−1)c1b1 · · · (−1)ckbk ≡ ±x (mod n).

Moreover, since x 6= 0, then also z 6= 0. Hence, Bob’s checks
succeed.

The chance that a bad Alice can fool Bob is only 1/2kt . The
authors recommend k = 5 and t = 4 for a failure probability of
1/220.

Michael J. Fischer CPSC 467b, Lecture 20 22/35



Outline Formalizing ZK Full FFS Non-I IP

Zero knowledge property

Theorem

The full FFS protocol is a zero knowledge proof of knowledge of
the sj for k = O(log log n) and t = O(log n).

Proof.

See U. Fiege, A. Fiat,and A. Shamir, Zero knowledge proofs of
identity, ACM Symp. on Theory of Computing, 1987,
210–217.

Michael J. Fischer CPSC 467b, Lecture 20 23/35

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.7149&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.7149&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.7149&rep=rep1&type=pdf


Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Non-interactive Interactive Proofs

Michael J. Fischer CPSC 467b, Lecture 20 24/35



Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Eliminating interaction from interactive proofs

Going from serial composition to parallel composition reduces
communication overhead but may sacrifice of zero knowledge.

Rather surprisingly, one can go a step further and eliminate the
interaction from interactive proofs altogether.

The idea is that Alice will provide Bob with a trace of a pretend
execution of an interactive proof of herself interacting with Bob.

Bob will check that the trace is a valid execution of the protocol.

Of course, that isn’t enough to convince Bob that Alice isn’t
cheating, for how does he ensure that Alice simulates random
query bits bi for him, and how does he ensure that Alice chooses
her xi ’s before knowing the bi ’s?

Michael J. Fischer CPSC 467b, Lecture 20 25/35



Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Keeping Alice from cheating

The solution is to make the bi ’s depend in an unpredictable way on
the xi ’s. We base the bi ’s on the value of a “random-looking”
hash function H applied to the concatenation of the xi ’s.

Here’s how it works in, say, the parallel composition of t copies of
the simplified FFS protocol.

The honest Alice chooses x1, . . . , xt according to the protocol.

Next she chooses b1 . . . bt to be the first t bits of H(x1 · · · xt).

Finally, she computes y1, . . . , yt , again according to the
protocol.

She sends Bob a single message consisting of
x1, . . . , xt , y1, . . . , yt .

Bob computes b1 . . . bt to be the first t bits of H(x1 · · · xt)
and then performs each of the t checks of the FFS protocol,
accepting Alice’s proof only if all checks succeed.

Michael J. Fischer CPSC 467b, Lecture 20 26/35



Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Why can’t Alice cheat?

A cheating Alice can choose yi arbitrarily and then compute a valid
xi for a given bi .

If she chooses the bi ’s first, the xi ’s she computes are unlikely to
hash to a string that begins with b1 . . . bt .1

If some bi does not agree with the corresponding bit of the hash
function, she can either change bi and try to find a new yi that
works with the given xi , or she can change xi to try to get the i th

bit of the hash value to change.

However, neither of these approaches works. The former may
require knowledge of Alice’s secret; the latter will cause the bits of
the hash function to change “randomly”.

1This assumes that the hash function “looks like” a random function. We
have already seen artificial examples of hash functions that do not have this
property.

Michael J. Fischer CPSC 467b, Lecture 20 27/35



Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Brute force cheating

One way Alice can attempt to cheat is to use a brute-force attack.

For example, she could generate all of the xi ’s to be squares of the
yi with the hopes that the hash of the xi ’s will make all bi = 0.

But that is likely to require 2t−1 attempts on average.

If t is chosen large enough (say t = 80), the number of trials Alice
would have to do in order to have a significant probability of
success is prohibitive.

Of course, these observations are not a proof that Alice can’t
cheat; only that the obvious strategies don’t work.

Nevertheless, it is plausible that a cheating Alice not knowing
Alice’s secret, really wouldn’t be able to find a valid such
“non-interactive interactive proof”.

Michael J. Fischer CPSC 467b, Lecture 20 28/35



Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Contrast with true interactive proofs

With a true zero-knowledge interactive proof, Bob does not learn
anything about Alice’s secret, nor can Bob impersonate Alice to
Carol after Alice has authenticated herself to Bob.

On the other hand, if Alice sends Bob a valid non-interactive
proof, then Bob can in turn send it on to Carol.

Even though Bob couldn’t have produced it on his own, it is still
valid.

So here we have the curious situation that Alice needs her secret in
order to produce the non-interactive proof string π, and Bob can’t
learn Alice’s secret from π, but now Bob can use π itself in an
attempt to impersonate Alice to Carol.

Michael J. Fischer CPSC 467b, Lecture 20 29/35



Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Feige-Fiat-Shamir Signatures

Michael J. Fischer CPSC 467b, Lecture 20 30/35



Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Similarity between signature scheme and non-interactive IP

A signature scheme has a lot in common with the “non-interactive
interactive” proofs.

In both cases, there is only a one-way communication from Alice
to Bob.

Alice signs a message and sends it to Bob.

Bob verifies it without further interaction with Alice.

If Bob hands the message to Carol, then Carol can also verify
that it was signed by Alice.

Not surprisingly, the “non-interactive interactive proof” ideas can
be used to turn the Feige-Fiat-Shamir authentication protocol into
a signature scheme.

Michael J. Fischer CPSC 467b, Lecture 20 31/35



Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Signature scheme from non-interactive IP

We present a signature scheme based on a slightly simplified
version of the full FFS authentication protocol in which all of the
vi ’s in the public key are quadratic residues, and n is not required
to be a Blum integer, only a product of two distinct odd primes.

The public verification key is (n, v1, . . . , vk), and the private
signing key is (n, s1, . . . , sk), where vj = s−2

j mod n (1 ≤ j ≤ k).

Michael J. Fischer CPSC 467b, Lecture 20 32/35



Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Signing algorithm

To sign a message m, Alice simulates t parallel rounds of FFS.

She first chooses random r1, . . . , rt ∈ Zn − {0} and computes

xi = r2
i mod n (1 ≤ i ≤ t).

She computes u = H(mx1 · · · xt), where H is a suitable
cryptographic hash function.

She chooses b1,1, . . . , bt,k according to the first tk bits of u:

bi ,j = u(i−1)∗k+j (1 ≤ i ≤ t, 1 ≤ j ≤ k).

Finally, she computes

yi = rs
bi,1

1 · · · sbi,k

k mod n (1 ≤ i ≤ t).

The signature is
s = (b1,1, . . . , bt,k , y1, . . . , yt).

Michael J. Fischer CPSC 467b, Lecture 20 33/35



Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Verification algorithm

To verify the signed message (m, s), Bob computes

zi = y2
i v

bi,1

1 · · · vbi,k

k mod n (1 ≤ i ≤ t).

Bob checks that each zi 6= 0 and that b1,1, . . . , bt,k are equal to
the first tk bits of H(mz1 · · · zt).

When both Alice and Bob are honest, it is easily verified that
zi = xi (1 ≤ i ≤ t). In that case, Bob’s checks all succeed since
xi 6= 0 and H(mz1 · · · zt) = H(mx1 · · · xt).

Michael J. Fischer CPSC 467b, Lecture 20 34/35



Outline Formalizing ZK Full FFS Non-I IP FFS Sigs

Forgery

To forge Alice’s signature, an impostor must find bi ,j ’s and yi ’s
that satisfy the equation

b1,1 . . . bt,k � H(m(y2
1 v

b1,1

1 · · · vb1,k

k mod n)

. . . (y2
t v

bt,1

1 · · · vbt,k

k mod n)).

where “�” means string prefix. It is not obvious how to solve such
an equation without knowing a square root of each of the v−1

i ’s
and following essentially Alice’s procedure.

Michael J. Fischer CPSC 467b, Lecture 20 35/35


	Outline
	Formalizing Zero Knowledge
	Computational Knowledge
	Composing Zero-Knowledge Proofs

	Full Feige-Fiat-Shamir Authentication Protocol
	Non-interactive Interactive Proofs
	Feige-Fiat-Shamir Signatures


