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Multiparty Computation
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Privacy

We have looked at many protocols whose goal is to keep Alice’s
information secret from an adversary, or sometimes even from Bob
himself.

We now look at protocols (like oblivious transfer) whose goal is to
control the release of information about Alice’s secret. Just enough
information should be released to carry out the purpose of the
protocol but no more.

This will become clearer with an example.
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The Millionaire’s Problem
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The Millionaire’s Problem

Alice and Bob want to know who is the richer without revealing
how much they are actually worth.

Alice is worth I million dollars; Bob is worth J million dollars.

They want to determine whether or not I ≥ J, but at the end of
the protocol, neither should have learned any more about the other
person’s wealth than is implied by the truth value of the predicate
I ≥ J.
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Privacy-preserving multiparty computation

The Millionaire’s problem, introduced by Andy Yao in 1982, began
the study of privacy-preserving multiparty computation.

Another example is vote-counting.

Each voter has an input vi ∈ {0, 1} indicating their no/yes vote on
an issue.

The goal is to collectively compute
∑

vi while maintaining the
privacy of the individual vi .
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A solution to Yao’s problem

For simplicity,assume that I , J ∈ {1, 2, . . . , 10}.

Let N be a security parameter, and assume that Alice has public
and private RSA keys (e, n) and (d , n), respectively, where n = p̄q̄,
and |p̄| ≈ |q̄| ≈ N

2 .

A protocol that intuitively works is shown on the next slide.1

1Adapted from web page “Solution to the Millionaire’s Problem”.
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The protocol

Alice Bob

1. Choose x of length N.
Let C = E(e,n)(x).

m←− Let m = (C − J + 1) mod n.

2a. Yi = D(d,n)(m+i−1), i ∈ [1, 10].
[Note: YJ = x . ]

2b. Choose prime p of length N/2 s.t.
|Zi − Zj | ≥ 2 for i 6= j , where
Zi = (Yi mod p), i ∈ [1, 10].

2c. Let Wi = (Zi + (i > I )) mod p,

i ∈ [1, 10].
p,W1,...,W10−→

3.
result←− result = (WJ ≡ x (mod p)).
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Verbal description

Alice decrypts the numbers m,m + 1, . . . ,m + 9 to get
corresponding Y1, . . . ,Y10.

The number YJ is Bob’s secret x , but Alice doesn’t know which it
is since all of the Yi ’s “look” random.

She then reduces them all mod a random prime p, resulting in
Z1, . . . ,Z10. Note that ZJ = x mod p and the other Zi ’s look
random.

Finally, she adds 1 (modp) to each of the numbers Zi for which i
is greater than her own wealth I . If she adds 1 to ZJ , this means
that J > I ; if not J ≤ I .

Bob can tell with is the case from the numbers that Alice sends
him in step 2c. Namely, if WJ ≡ x (mod p), this means that 1
was not added, so I ≥ J. Otherwise, I < J.

Michael J. Fischer CPSC 467b, Lecture 25 10/48



Outline Multiparty Summary Millionaire’s Security model Evaluation Homomorphic

Detailed description

Alice Bob

1. Choose x of length N.
Let C = E(e,n)(x).

m←− Let m = (C − J + 1) mod n.

2a. Yi = D(d,n)(m+i−1), i ∈ [1, 10].
[Note: YJ = x . ]

The number C = (m + J − 1) mod n is the encryption of Bob’s
random secret x .

The numbers in M = {m mod n, . . . , (m + 9) mod n} are
“random-looking,” and all are possible ciphertexts.

Alice knows that C ∈M but doesn’t know which element it is.

After decryption, she knows that some Yi = x but not which one.
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Detailed description (cont.)

Alice Bob

2b. Choose prime p of length N/2 s.t.
|Zi − Zj | ≥ 2 for i 6= j , where
Zi = (Yi mod p), i ∈ [1, 10].

2c. Let Wi = (Zi + (i > I )) mod p,

i ∈ [1, 10].
p,W1,...,W10−→

The numbers in Y = {Y1, . . . ,Y10} have no particular pattern.
In all likelihood, no pair are at all close together.

Similarly, for most choices of p, no pair of Zj ’s will be close.

Hence, the Wj ’s are distinct, and

Wj =

{
Zj mod p if j ≤ I ;
Zj + 1 mod p if j > I ;
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Detailed description (cont.)

Alice Bob

3.
result←− result = (WJ ≡ x (mod p)).

Since YJ = x , then YJ ≡ ZJ ≡ x (mod p).

Hence, if WJ ≡ x (mod p), then J ≤ I , otherwise J > I .
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Privacy

Clearly, all that Alice learns from Bob is a set of random-looking
numbers m, . . . ,m + 9, one of which corresponds to Bob’s wealth
J, but she has no way of telling which, since any number in Z∗n is
the RSA encryption of some plaintext message.

Bob on the other hand receives p and W1, . . . ,W10 from Alice in
step 2. However, he does not know any Zi for i 6= J since he
cannot decrypt the corresponding numbers m + i − 1.

He also cannot recover Yi from Wi because of the information loss
implicit in the “mod p” operation. Thus, he also learns nothing
about Alice’s wealth I except for the value of the predicate I ≥ J.

We remark that this protocol works only in the semi-honest model
in which both Alice and Bob follow their protocol, but both will try
to infer whatever they can about the others secrets after the fact.
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A General Security Model
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How can we define multiparty security?

How to define security in a multiparty protocol is far from obvious.

For example, in the millionaire’s problem, there is no way to
prevent either Alice or Bob from lying about their wealth, nor is it
possible to prevent either of them from voluntarily giving up
secrecy by broadcasting their wealth.

Thus, we can’t hope to find a protocol that will prevent all kinds of
cheating.
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Ideal versus real protocol security model

What we do instead is to compare a given “real” protocol with a
corresponding very simple “ideal” protocol involving a trusted third
party.

The real protocol should simulate the ideal protocol, much the
same as the simulator of a zero knowledge proof system simulates
the real interaction between prover and verifier.

The real protocol is deemed to be secure if any bad things that can
happen in the real protocol are also possible in the ideal protocol.
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Example of an ideal protocol

The ideal protocol for the millionaire’s problem has just two steps:

Step 1: Alice and Bob send their secrets I and J, respectively,
to the trusted party across a private, secure channel.

Step 2: the trusted party computes the value of the predicate
I ≥ J and sends the result back to both Alice and Bob.

The goal of the real protocol is that Alice and Bob don’t learn any
more than they could learn in the ideal protocol.
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What does an ideal protocol compute?

What does an ideal multiparty protocol compute? Suppose there
are m parties to the protocol, P1, . . . ,Pm.

Each Pi has a private input xi and receives a private output yi .

We say that F is a (multiparty) functionality if F is a random
process that maps m inputs to m outputs.

As a special case, we say that F is deterministic if the m outputs
are uniquely determined by the m inputs.

The millionaire’s problem can be expressed succinctly as the
problem of securely computing the (deterministic) functionality

F (I , J) = ((I ≥ J), (I ≥ J))

in the semi-honest model.
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Simple application of oblivious transfer

Consider the problem of privately evaluating a Boolean function
f (x , y), where x is private to Alice and y is private to Bob. This
corresponds to privately computing the functionality

F (x , y) = (f (x , y), f (x , y)).

We use a slight variant of the one-out-of-two secrets oblivious
transfer protocol presented last time:

In OT2
1, the secrets are numbered s0 and s1. Bob requests and

gets the secret of his choice, but Alice does not learn which secret
he got.

This can be generalized to the case k secrets, where OTk
1 lets Bob

choose one out of k.
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The protocol

Here’s the protocol.

1 Alice, with private input x ∈ {0, 1}, prepares a table T :

y f (x , y)

0 f (x , 0)
1 f (x , 1)

She doesn’t know y , but she does know that the correct value
f (x , y) is in her table. It’s either f (x , 0) or f (x , 1).

2 Bob, with private input y , obtains line y of the table using
OT2

1. Bob outputs f (x , y) without learning x .

3 Bob sends f (x , y) to Alice, who also outputs it.
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Remarks

While this functionality seems almost too trivial to be interesting,
it’s really not.

For example, if f (x , y) = x ∧ y and Alice knows x = 0, then the
answer f (x , y) does not tell her Bob’s value y , so it’s important
that the protocol also not leak y in this case.

Similarly, when Bob requests the value corresponding to row 0, he
gets no information about x when the result f (x , 0) = 0 comes
back.

(In fact he knew that already before getting row 0 from Alice.)
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Private Circuit Evaluation
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Privacy-preserving Boolean function evaluation

We now generalize the simple example to any function z̄ = f (x̄ , ȳ),
where x̄ , ȳ , and z̄ are bit strings of lengths nx , ny , and nz ,
respectively, and f (x̄ , ȳ) is computed by a polynomial size Boolean
circuit with nx + ny input wires and nz output wires.

The corresponding functionality is

F (x̄ , ȳ) = (f (x̄ , ȳ), f (x̄ , ȳ)).

Alice furnishes the (private) input data to the first nx input wires.
Bob furnishes the input data for the remaining ny input wires.

Alice and Bob should learn nothing about each others inputs or the
intermediate values of the circuit, other than what is implied by
their own inputs and the nz output values.
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Non-private circuit evaluation

A non-private evaluation of the circuit associates a Boolean value
σw with each wire of the circuit.

The input wires are associated with the corresponding input values.

Let G be a gate with input wires u and v and output wire w that
computes the Boolean function g(x , y).

If σu is the value on wire u and σv the value on wire v , then the
value on wire w is g(σu, σv ).

A complete evaluation of the circuit first assigns values to the
input wires and then works its way down the circuit, assigning a
value to the output wire of any gate whose inputs have already
received values.
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Private circuit evaluation

To carry out the evaluation privately, we split the value σw on each
wire w into two random shares aw and bw , where σw = aw ⊕ bw .

Neither share alone gives any information about σw , but together
they allow σw to be computed.

After having computed shares for all of the wires, Alice and Bob
exchange their shares aw and bw for each output wire w .
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Obtaining the shares

We now describe how Alice and Bob obtain their shares while
maintaining the desired privacy.

There are three cases, depending on whether w is an input wire
controlled by Alice, an input wire controlled by Bob, or the output
wire of a gate G .
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Alice’s input wires

1 Input wire controlled by Alice:

Alice knows σw .

She generates a random share aw ∈ {0, 1} for herself and
sends Bob his share bw = aw ⊕ σw .
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Bob’s input wires

2 Input wire controlled by Bob:

Bob knows σw .

Alice chooses a random share aw ∈ {0, 1} for herself.

She prepares a table T :

σ T [σ]

0 aw

1 aw ⊕ 1.

Bob requests T [σw ] from Alice via OT2
1 and takes his share to

be bw = T [σw ] = aw ⊕ σw .
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Obtaining shares for gate output wires

3 Output wire of a gate G :
Let G have input wires u, v and compute function g(x , y).
Alice chooses random share aw ∈ {0, 1} for herself.
She computes the table

T [0, 0] = aw ⊕ g(au, av )

T [0, 1] = aw ⊕ g(au, av ⊕ 1)

T [1, 0] = aw ⊕ g(au + 1, av )

T [1, 1] = aw ⊕ g(au + 1, av + 1)

(Equivalently, T [r , s] = aw ⊕ g(au ⊕ r , av ⊕ s).)

Bob requests T [bu, bv ] from Alice via OT4
1 and takes his share

to be bw = T [bu, bv ] = aw ⊕ g(σu, σv ).
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Remarks

1 Alice and Bob’s shares for w are both independent of σw .

Alice’s share is chosen uniformly at random.
Bob’s share is always the XOR of Alice’s random bit aw with
something independent of aw .

2 This protocol requires ny executions of OT2
1 to distribute the

shares for Bob’s inputs, and one OT4
1 for each gate.2

3 This protocol assumes semi-honest parties.

4 This protocol generalizes readily from 2 to m parties.

5 Bob does not even need to know what function each gate G
computes. He only uses his private inputs or shares to request
the right line of the table in each of the several OT protocols.

2Note: The ny executions of OT2
1 can be eliminated by having Bob produce

the shares for his input wires just as Alice does for hers. Our approach has the
advantage of being more uniform since Alice is in charge of distributing the
shares for all wires.
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Private circuit evaluation using garbled circuits

A very different approach to private circuit evaluation is the use of
garbled circuits.

The idea here is that Alice prepares a garbled circuit in which each
wire has associated with it a tag corresponding to 0 and a tag
corresponding to 1.

Associated with each gate is a template that allows the tag that
represent the correct output value to be computed from the tags
representing the input values.

This is all done in a way that keeps hidden the actual values that
the tags represent.
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A sketch of the protocol

After creating the circuit, Alice, who knows all of the tags, uses
OT2

1 to send Bob the tags corresponding to values on the input
wires that he controls.

She also sends him the tags corresponding to the values on the
input wires that she controls.

Bob then evaluates the circuit all by himself, computing the output
tag for each gate from the tags on the input wires.

At the end, he knows the tags corresponding to the output wires.

Alice knows which Boolean values those tags represent, which she
sends to Bob (either before or after he has evaluated the circuit).

In this way, Bob learns the output of the circuit, which he then
sends to Alice.
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Role of the tags

The scrambled gate is a 4-line table giving the output tag
corresponding to each of the possible 4 input values.

Each line of the table is encrypted differently.

The input tags to the gate allow the corresponding table item to
be decrypted.

Evaluating the circuit then amounts to decrypting ones way though
the circuit, gate by gate, until getting the output tag

Michael J. Fischer CPSC 467b, Lecture 25 34/48



Outline Multiparty Summary Millionaire’s Security model Evaluation Homomorphic

Remarks

1 The OT2
1 protocol steps used to distribute the tags for the

wires that Bob controls keeps his inputs private from Alice.
The privacy of Alice’s inputs and intermediate circuit values
from Bob relies on the encryption function used to hide the
association between tags and values.

2 The security of the protocol relies on properties of the
encryption function that we have not stated.

3 This protocol requires only ny executions of OT2
1 and hence

should be considerably faster to implement than the
share-based protocol.

4 This protocol also assumes semi-honest parties.
5 Doesn’t easily generalize to more than two parties.
6 Bob does not need to know what function each gate G

computes. All he needs is the list of templates associated with
each gate.
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Homomorphic Encryption
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Homomorphic property

An encryption function E (·) is said to be homomorphic with
respect to an operator � if one can compute E (x � y) from E (x)
and E (y) without decrypting either ciphertext.

Several well-known cryptosystems have a homomorphic property.

RSA E (x · y) ≡ (xy)e ≡ xe · y e ≡ E (x) · E (y) (mod n).

ElGamal
E (xy) = (g rx+ry , (xy)hrx+ry )

= (g rx , xhrx ) · (g ry , yhry )

= E (x) · E (y),

where · on pairs means componentwise
multiplication.
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Goldwasser-Micali cryptosystems

Goldwasser-Micali Public key is n = pq, y ∈ QNRn,
E (b) = r2yb mod n for random r .

E (b1) · E (b2) mod n = (r2
1 yb1)(r2

2 yb2) mod n

= (r1r2)2yb1+b2 mod n

While this is not equal to E (b1⊕ b2) = (r1r2)2yb1⊕b2 ,
is equal to r2yb1⊕b2 for some possibly different choice
of r . Hence, E (b1) · E (b2) is a valid encryption of
b1 ⊕ b2, as desired.
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Benaloh cryptosystem

Benaloh This generalizes the Goldwasser-Micali scheme to
give

E

(
k∑

i=1

bi

)
=

k∏
i=1

E (bi )

As with Goldwasser-Micali, this is a randomized
encryption scheme, so equality means only that the
product is one of the possible encryptions of the sum
of the bi ’s.
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Application to secret ballot elections

Homomorphic encryption can be applied to verifiable secret ballot
elections.

Each voter i has a vote bi . To cast the vote, the voter computes
ci = E (bi ) using the public encryption function of the voting
authority and submits ci . Here we assume the Benaloh scheme.

The voting authority publishes the ci ’s for all of the voters, gives
the tally t =

∑
bi , and gives the random string that shows

E (t) =
∏k

i=1 E (bi ).

Any voter can check that her own vote appears and can check that
this equation holds, but she cannot determine anyone else’s votes.

This makes sense in the situation where the voting authority is
trusted to respect the privacy of votes but not to count the votes
correctly.
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Topic summary I

12: Primitive Roots
12: Discrete Logarithm
12: Diffie-Hellman Key Exchange
12: ElGamal Key Agreement

13: Quadratic Residues, Squares, and Square Roots
13: Square Roots Modulo a Prime
13: Square Roots Modulo the Product of Two Primes
13: Euler Criterion

13: Finding Square Roots
13: Square Roots Modulo Special Primes
13: Square Roots Modulo General Odd Primes

13: QR Probabilistic Cryptosystem
14: Quadratic Residues
14: Basic facts (review)
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Topic summary II

14: Legendre Symbol
14: Jacobi Symbol
14: Computing the Jacobi Symbol

14: Useful Tests of Compositeness
14: Solovay-Strassen Test of Compositeness
14: Miller-Rabin Test of Compositeness

14: Digital Signatures
14: Definition and Properties
14: RSA Digital Signature Scheme
14: Signatures from non-commutative cryptosystems

15: Digital Signatures
15: Security of digital signatures
15: Random Messages
15: Implications of Digital Signatures

15: Message Digest Functions
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Topic summary III

16: Brief Review of Squares and Square Roots
16: Testing versus computing
16: Prime versus composite modulus

16: Combining Signatures with Encryption
16: ElGamal Signatures
16: Digital Signature Algorithm (DSA)

16: Common Hash Functions
17: Hash Function Constructions
17: Extending a hash function
17: A General Chaining Method
17: Hash Functions Do Not Always Look Random
17: Birthday Attack on Hash Functions
17: Hash from Cryptosystem
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Topic summary IV

17: Authentication Using Passwords
17: Passwords
17: Secure Password Storage
17: Dictionary Attacks

18: Authentication While Preventing Impersonation
18: Challenge-response authentication protocols
18: Feige-Fiat-Shamir Authentication Protocol

19: Zero Knowledge Interactive Proofs
19: Secret cave protocol
19: ZKIP for graph isomorphism
19: Abstraction from two ZKIP examples

19: Other Kinds of Interactive Proofs
19: Interactive proof of graph non-isomorphism
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Topic summary V

20: Formalizing Zero Knowledge
20: Computational Knowledge
20: Composing Zero-Knowledge Proofs

20: Full Feige-Fiat-Shamir Authentication Protocol
20: Non-interactive Interactive Proofs
20: Feige-Fiat-Shamir Signatures

21: Pseudorandom Sequence Generation
21: Concepts of Pseudorandomness
21: BBS Pseudorandom Sequence Generator

22: Pseudorandom Sequence Generation
22: Bit-Prediction

22: Secret Splitting
22: Two-Part Secret Splitting
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Topic summary VI

22: Multi-Part Secret Splitting
22: Shamir’s Secret Splitting Scheme

23: Secret Splitting (continued)
23: Secret Splitting with Dishonest Parties

23: Bit Commitment Problem
23: Bit Commitment Using Symmetric Cryptography
23: Bit Commitment Using Hash Functions
23: Bit Commitment Using Pseudorandom Sequence Generators
23: Formalization of Bit Commitment Schemes

24: Coin-Flipping
24: Locked Box Paradigm
24: Overview
24: Application to Coin-Flipping
24: Implementation

24: Oblivious Transfer
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Topic summary VII

24: Oblivious Transfer of One Secret
24: Oblivious Transfer of One Secret Out of Two

25: Privacy-Preserving Multiparty Computation
25: The Millionaire’s Problem
25: Multiparty Computation
25: Private Circuit Evaluation
25: Homomorphic Encryption
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