
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467b: Cryptography and Computer Security Handout #15
Professor M. J. Fischer April 9, 2010

Problem Set 5

Part A: Due on Friday, April 16, 2010. Part B: Due on Monday, April 26, 2010.

1 A Variant of the Feige-Fiat-Shamir Authentication Protocol

This problem is to implement a simple variant of the one-round Feige-Fiat-Shamir authentication
protocol described in Lecture 18. The assignment is split into two parts. Part A is to generate the
public and private keys for use by the protocol. Part B is to implement the protocol itself as an
internet protocol using TCP sockets.

In our variant, Alice chooses a security parameter N . She generates a random modulus n = pq
that is the product of two distinct odd primes p and q, each of length bN/2c. She then chooses at
random a secret s ∈ Zn and computes v = s2 mod n. She makes the pair (n, v) public and keeps
the pair (n, s) private. One round of the variant authentication protocol is shown in Figure 1.

Alice Bob

1. Choose random r ∈ Zn.
Compute x = r2 mod n. x−→

2. b←− Choose random b ∈ {0, 1}.
3. Compute y = rsb mod n.

y−→ Check y2 ≡ xvb (mod n).

Figure 1: One round of the variant FFS protocol.

Note that we have simplified the protocol of Lecture 18 in two ways: First, we have eliminated
the need to compute inverses mod n. Second, we do not restrict the secret to Z∗

n. Obviously it
is desirable in practice to avoid secrets in Zn − Z∗

n, but the protocol still “works” even with such
secrets (in the sense that the real Alice will be accepted by Bob), and the probability of generating
such a secret is too small to have much effect on the overall security.

2 Part A: Key Generator Assignment

Write a computer program ffs-keygen to generate public and private key files for use by the
protocol. ffs-keygen takes two command line arguments, N and user, where N is the security
parameter and user is the name of the user for whom the key is being generated. The program
generates a public key pair (n, v) and a private key pair (n, s) as described above and writes its
output to two files, user.pub and user.prv. File user.pub contains user, n, and v, one
per line. File user.prv contains user, n, and s, one per line. The user name is a string, and the
numbers are represented as decimal integers. Your program should handle values of N ≤ 4096 and
user names at most 31 characters long.



2 Problem Set 5

3 Part B: Protocol Implementation Assignment

Write two computer programs, ffs-server and ffs-client.

ffs-server takes two or more command line arguments: a repetition count t and one or more
public key files. It reads the key files and builds a table of authorized users. It then opens
a welcome socket, prints out the host name and port number of that socket, and waits for
incoming connections. When contacted by a client, it identifies itself to the client and gets
a user name from the client. It then runs t rounds of the protocol of Figure 1, trying to
authenticate that user. You may assume that t ≤ 100.

If all t rounds succeed, it informs the user of successful authentication and logs the outcome
to standard output. If the check in line 3 of any round fails, it informs the user of unsuccessful
authentication and logs the outcome to standard output, printing the round number which
failed. If a bad or unexpected message is encountered, it informs the user of an error, logs the
error to standard output, and closes the connection. Other error conditions, such as a broken
network connection, should also be logged to standard output as appropriate. The server then
goes back and waits for another incoming connection.

The server as just described can handle only one connection at a time. In real life, one would
want a server that can handle multiple simultaneous authentication attempts by different users,
but we do not require that enhancement for this assignment.

ffs-client takes three command line arguments: host, port, and a private key file. The
client reads the key file and attempts to connect to the server at the specified host and port. If
successful, it reads and prints the greeting message from the server. Next, it sends the user
name contained in the private key file to the server and waits for a response. It then runs round
after round of the authentication protocol of Figure 1 until the server either authenticates or
rejects the client, or until an error is encountered. Whichever event finally occurs should be
printed out, after which the client should exit.

4 Low-level Protocol

Client and server should communicate by alternate exchange of messages. Each message consists
of a single line of text, terminated by a newline character. A message begins with a message type
code, possibly followed by whitespace-delimited arguments. The allowed message types are given
in Figure 2.

A sample successful run of the protocol is shown in Figure 3.

5 Programming Hints

Your program should be written in C or C++ and should use one of the big number libraries dis-
cussed in Lecture 8. You may use any of the provided functions in solving this problem. In particu-
lar, you do not need to implement your own primality testing function or random number generator
if the versions provided by the package are adequate for this problem. I also do not require that the
random number generator be cryptographically strong.

For those of you who are unfamiliar with sockets, I will provide working C code for a simple
client and server that communicate via sockets.



Handout #15—April 9, 2010 3

Sender Type Parameters Meaning
Server HELLO hostname, port Initial greeting
Server UNKNOWN User is unknown to server
Server START Start a round of the protocol
Server QUERY b The query bit b from line 2
Server AUTHENTICATED User was successfully authenticated
Server REJECTED User was rejected
Client USER username My user name
Client QR x The quadratic residue x from line 1
Client RESPONSE y The response bit y from line 3
Either ERROR description Error/illegal data received from peer

Figure 2: Message types.

Who Action or message
Client: Opens connection to server
Server: HELLO frog.zoo.cs.yale.edu 2345
Client: USER mike
Server: START
Client: QR 392285843992034. . .
Server: QUERY 1
Client: RESPONSE 49996843002020. . .
Server: START
Client: QR 969594645830992. . .
Server: QUERY 0
Client: RESPONSE 654923923432. . .
Server: AUTHENTICATED
Server: Closes connection and accepts new client
Client: Receives message; closes connection and exits

Figure 3: A successful run of the protocol for t = 2.

6 Submission

You solution should be submitted two parts. The key generation assignment should be submitted as
problem “5a”. The protocol implementation should be submitted as problem “5b”. Remember that
the two parts have different due dates.


	A Variant of the Feige-Fiat-Shamir Authentication Protocol
	Part A: Key Generator Assignment
	Part B: Protocol Implementation Assignment
	Low-level Protocol
	Programming Hints
	Submission

