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More number theory with cryptographic applications

We turn next to other number-theoretic techniques with important
cryptographic applications.

We begin by looking in greater detail at the structure of Z∗
n, the

set of integers in Zn that are relatively prime to n.
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Structure of Z∗n

Let g ∈ Z∗
n and consider the successive powers g , g 2, g 3, . . ., all

taken modulo n. This sequence must eventually repeat. Why?

Because Z∗
n is finite.

This sequence contains 1. Why?

By Euler’s theorem, since gk = 1 (in Zn) for k = φ(n).
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Cyclic groups

Let k be the smallest positive integer such that gk = 1. We call k
the order of g and write ord(g) = k .

The elements {g , g 2, . . . , gk = 1} form a subgroup S of Z∗
n.1

The order of S (number of elements in S) is ord(g); hence
ord(S) |φ(n). Why?

Again because of Euler’s theorem.

We say that g generates S and that S is cyclic.

1A subgroup is a subset of the elements that is closed under the group
operations.
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Primitive root

We say g is a primitive root of n if g generates all of Z∗
n, that is,

every element of Z∗
n can be written as g raised to some power

modulo n.

By definition, this holds if and only if ord(g) = φ(n).

Not every integer n has primitive roots.

By Gauss’s theorem, the numbers having primitive roots are
1, 2, 4, pk , 2pk , where p is an odd prime and k ≥ 1.

In particular, every prime has primitive roots.

Michael J. Fischer CPSC 467b, Lecture 12 6/25



Outline Primitive Roots Discrete log Diffie-Hellman ElGamal

Primitive root

We say g is a primitive root of n if g generates all of Z∗
n, that is,

every element of Z∗
n can be written as g raised to some power

modulo n.

By definition, this holds if and only if ord(g) = φ(n).

Not every integer n has primitive roots.

By Gauss’s theorem, the numbers having primitive roots are
1, 2, 4, pk , 2pk , where p is an odd prime and k ≥ 1.

In particular, every prime has primitive roots.

Michael J. Fischer CPSC 467b, Lecture 12 6/25



Outline Primitive Roots Discrete log Diffie-Hellman ElGamal

Primitive root

We say g is a primitive root of n if g generates all of Z∗
n, that is,

every element of Z∗
n can be written as g raised to some power

modulo n.

By definition, this holds if and only if ord(g) = φ(n).

Not every integer n has primitive roots.

By Gauss’s theorem, the numbers having primitive roots are
1, 2, 4, pk , 2pk , where p is an odd prime and k ≥ 1.

In particular, every prime has primitive roots.

Michael J. Fischer CPSC 467b, Lecture 12 6/25



Outline Primitive Roots Discrete log Diffie-Hellman ElGamal

Primitive root

We say g is a primitive root of n if g generates all of Z∗
n, that is,

every element of Z∗
n can be written as g raised to some power

modulo n.

By definition, this holds if and only if ord(g) = φ(n).

Not every integer n has primitive roots.

By Gauss’s theorem, the numbers having primitive roots are
1, 2, 4, pk , 2pk , where p is an odd prime and k ≥ 1.

In particular, every prime has primitive roots.

Michael J. Fischer CPSC 467b, Lecture 12 6/25



Outline Primitive Roots Discrete log Diffie-Hellman ElGamal

Primitive root

We say g is a primitive root of n if g generates all of Z∗
n, that is,

every element of Z∗
n can be written as g raised to some power

modulo n.

By definition, this holds if and only if ord(g) = φ(n).

Not every integer n has primitive roots.

By Gauss’s theorem, the numbers having primitive roots are
1, 2, 4, pk , 2pk , where p is an odd prime and k ≥ 1.

In particular, every prime has primitive roots.

Michael J. Fischer CPSC 467b, Lecture 12 6/25



Outline Primitive Roots Discrete log Diffie-Hellman ElGamal

Number of primitive roots

The number of primitive roots of p is φ(φ(p)).

This is because if g is a primitive root of p and x ∈ Z∗
φ(p), then g x

is also a primitive root of p. Why?

We need to argue that every element h in Z∗
p can be expressed as

h = (g x)y for some y .

Since g is a primitive root, we know that h ≡ g ` (mod p) for
some `.

We wish to find y such that g xy ≡ g ` (mod p).

By Euler’s theorem, this is possible if the congruence equation
xy ≡ ` (mod φ(p)) has a solution y .

We know that a solution exists iff gcd(x , φ(p)) |`.
But this is the case since x ∈ Z∗

φ(p), so gcd(x , φ(p)) = 1.
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Primitive root example

Let p = 19, so φ(p) = 18 and φ(φ(p)) = φ(2) · φ(9) = 6.

Let g = 2. The subgroup S of Zp generated by g is given by the
table:

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

gk 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

Since S = Z∗
p, we know that g is a primitive root.

Now let’s look at Z∗
φ(p) = Z∗

18 = {1, 5, 7, 11, 13, 17}.

The complete set of primitive roots of p (in Zp) is then

{2, 25, 27, 211, 213, 217} = {2, 13, 14, 15, 3, 10}.
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Lucas test

Theorem (Lucas test)

g is a primitive root of p if and only if

g (p−1)/q 6≡ 1 (mod p)

for all 1 < q < p − 1 such that q |(p − 1).

Clearly, if the test fails for some q, then

ord(g) ≤ (p − 1)/q < p − 1 = φ(p), Why?

so g is not a primitive root of p.

Conversely, if ord(g) < φ(p), then the test will fail for
q = (p − 1)/ord(g).
This is because q is included in the test and ord(g) |φ(p).
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Problems with the Lucas test

A drawback to the Lucas test is that one must try all the divisors
of p − 1, and there can be many.

Moreover, to find the divisors efficiently implies the ability to
factor. Thus, it does not lead to an efficient algorithm for finding a
primitive root of an arbitrary prime p.

However, there are some special cases which we can handle.
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Special form primes

Let p and q be odd primes such that p = 2q + 1.
Then, p − 1 = 2q, so p − 1 is easily factored and the Lucas test
easily employed.

There are lots of examples of such pairs, e.g., q = 41 and p = 83.

How many primitive roots does p have?

We just saw the number is

φ(φ(p)) = φ(p − 1) = φ(2)φ(q) = q − 1.

Hence, the density of primitive roots in Z∗
p is

(q − 1)/(p − 1) = (q − 1)/2q ≈ 1/2.

This makes it easy to find primitive roots of p probabilistically —
choose a random element a ∈ Z∗

p and apply the Lucas test to it.
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Density of special form primes

We defer the question of the density of primes q such that 2q + 1
is also prime but remark that we can relax the requirements a bit.

Let q be a prime. Generate a sequence of numbers
2q + 1, 3q + 1, 4q + 1, . . . until we find a prime p = uq + 1.

By the prime number theorem, approximately one out of every
ln(q) numbers around the size of q will be prime.

While that applies to randomly chosen numbers, not the numbers
in this particular sequence, there is at least some hope that the
density of primes will be similar.

If so, we can expect that u will be about ln(q), in which case it
can easily be factored using exhaustive search. At that point, we
can apply the Lucas test as before to find primitive roots.
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can apply the Lucas test as before to find primitive roots.
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Logarithms

Let y = bx over the reals. The ordinary base-b logarithm is the
inverse of the exponential function, so logb(y) = x .

The discrete logarithm is defined similarly, but now arithmetic is
performed in Z∗

p for a prime p.

In particular, the discrete log to the base b of y modulo p is the
least non-negative integer x such that y ≡ bx (mod p) (if it
exists). We write x = logb(y) mod p.

If b is a primitive root of p, then logb(y) is defined for every
y ∈ Z∗

p. Why?

Michael J. Fischer CPSC 467b, Lecture 12 13/25



Outline Primitive Roots Discrete log Diffie-Hellman ElGamal

Logarithms

Let y = bx over the reals. The ordinary base-b logarithm is the
inverse of the exponential function, so logb(y) = x .

The discrete logarithm is defined similarly, but now arithmetic is
performed in Z∗

p for a prime p.

In particular, the discrete log to the base b of y modulo p is the
least non-negative integer x such that y ≡ bx (mod p) (if it
exists). We write x = logb(y) mod p.

If b is a primitive root of p, then logb(y) is defined for every
y ∈ Z∗

p. Why?

Michael J. Fischer CPSC 467b, Lecture 12 13/25



Outline Primitive Roots Discrete log Diffie-Hellman ElGamal

Logarithms

Let y = bx over the reals. The ordinary base-b logarithm is the
inverse of the exponential function, so logb(y) = x .

The discrete logarithm is defined similarly, but now arithmetic is
performed in Z∗

p for a prime p.

In particular, the discrete log to the base b of y modulo p is the
least non-negative integer x such that y ≡ bx (mod p) (if it
exists). We write x = logb(y) mod p.

If b is a primitive root of p, then logb(y) is defined for every
y ∈ Z∗

p. Why?

Michael J. Fischer CPSC 467b, Lecture 12 13/25



Outline Primitive Roots Discrete log Diffie-Hellman ElGamal

Discrete log problem

The discrete log problem is the problem of computing
logb(y) mod p, where p is a prime and b is a primitive root of p.

No efficient algorithm is known for this problem and it is believed
to be intractable.

However, the inverse of the function logb() mod p is the function
powerb(x) = bx mod p, which is easily computable.

powerb is an example of a so-called one-way function, that is a
function that is easy to compute but hard to invert.
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Key exchange problem

The key exchange problem is for Alice and Bob to agree on a
common random key k.

One way for this to happen is for Alice to choose k at random and
then communicate it to Bob over a secure channel.

But that presupposes the existence of a secure channel.
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D-H key exchange overview

The Diffie-Hellman Key Exchange protocol allows Alice and Bob to
agree on a secret k without having prior secret information and
without giving an eavesdropper Eve any information about k . The
protocol is given on the next slide.

We assume that p and g are publicly known, where p is a large
prime and g a primitive root of p.
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D-H key exchange protocol

Alice Bob

Choose random x ∈ Zφ(p). Choose random y ∈ Zφ(p).

a = g x mod p. b = g y mod p.

Send a to Bob. Send b to Alice.

ka = bx mod p. kb = ay mod p.

Diffie-Hellman Key Exchange Protocol.

Clearly, ka = kb since

ka ≡ bx ≡ g xy ≡ ay ≡ kb (mod p).

Hence, k = ka = kb is a common key.
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Security of DH key exchange

In practice, Alice and Bob can use this protocol to generate a
session key for a symmetric cryptosystem, which they can
subsequently use to exchange private information.

The security of this protocol relies on Eve’s presumed inability to
compute k from a and b and the public information p and g . This
is sometime called the Diffie-Hellman problem and, like discrete
log, is believed to be intractable.

Certainly the Diffie-Hellman problem is no harder that discrete log,
for if Eve could find the discrete log of a, then she would know x
and could compute ka the same way that Alice does.

However, it is not known to be as hard as discrete log.
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A variant of DH key exchange

A variant protocol has Bob going first followed by Alice.

Alice Bob

Choose random y ∈ Zφ(p).

b = g y mod p.

Send b to Alice.

Choose random x ∈ Zφ(p).

a = g x mod p.

Send a to Bob.

ka = bx mod p. kb = ay mod p.

ElGamal Variant of Diffie-Hellman Key Exchange.
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Comparison with first DH protocol

The difference here is that Bob completes his action at the
beginning and no longer has to communicate with Alice.

Alice, at a later time, can complete her half of the protocol and
send a to Bob, at which point Alice and Bob share a key.

This is just the scenario we want for public key cryptography. Bob
generates a public key (p, g , b) and a private key (p, g , y).

Alice (or anyone who obtains Bob’s public key) can complete the
protocol by sending a to Bob.

This is the idea behind the ElGamal public key cryptosystem.
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ElGamal cryptosystem

Assume Alice knows Bob’s public key (p, g , b). To encrypt a
message m:

She first completes her part of the key exchange protocol to
obtain numbers a and k .

She then computes c = mk mod p and sends the pair (a, c)
to Bob.

When Bob gets this message, he first uses a to complete his
part of the protocol and obtain k .

He then computes m = k−1c mod p.
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Combining key exchange with underlying cryptosystem

The ElGamal cryptosystem uses the simple encryption function
Ek(m) = mk mod p to actually encode the message.

Any symmetric cryptosystem would work equally well.

An advantage of using a standard system such as AES is that long
messages can be sent following only a single key exchange.
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A hybrid ElGamal cryptosystem

A hybrid ElGamal public key cryptosystem.

As before, Bob generates a public key (p, g , b) and a private
key (p, g , y).

To encrypt a message m to Bob, Alice first obtains Bob’s
public key and chooses a random x ∈ Zφ(p).

She next computes a = g x mod p and k = bx mod p.

She then computes E(p,g ,b)(m) = (a, Êk(m)) and sends it to

Bob. Here, Ê is the encryption function of the underlying
symmetric cryptosystem.

Bob receives a pair (a, c).

To decrypt, Bob computes k = ay mod p and then computes
m = D̂k(c).
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Randomized encryption

We remark that a new element has been snuck in here. The
ElGamal cryptosystem and its variants require Alice to generate a
random number which is then used in the course of encryption.

Thus, the resulting encryption function is a random function rather
than an ordinary function.

A random function is one that can return different values each
time it is called, even for the same arguments.

Formally, we view a random function as returning a probability
distribution on the output space.
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Remarks about randomized encryption

With E(p,g ,b)(m) each message m has many different possible
encryptions. This has some consequences.

An advantage: Eve can no longer use the public encryption
function to check a possible decryption.

Even if she knows m, she cannot verify m is the correct decryption
of (a, c) simply by computing E(p,g ,b)(m), which she could do for a
deterministic cryptosystem such as RSA.

Two disadvantages:

Alice must have a source of randomness.

The ciphertext is longer than the corresponding plaintext.
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