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Brief Review of Squares and Square Roots
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Summary of results mod primes and composites

We have discussed three different cases of moduli with respect to
quadratic residues, square roots, primitive roots, and other
number-theoretic functions.

1 Primes.

2 Composites that are the product of two distinct odd primes.

3 General composite numbers

I want to summarize some of these results to help you keep them
straight and to give a greater perspective on how they relate to
each other.

Michael J. Fischer CPSC 467b, Lecture 16 4/35



Outline Review Signed & encrypted ElGamal sigs DSA Hash Testing Prime/Composite

Testing versus computing

Testing for the existence of an element with specific properties is
never harder than finding it, and it can be much easier (assuming
you can tell for a specific element whether it has those properties).
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Finding a proper prime divisor

Testing for the existence of a proper prime divisor of n is
equivalent to testing if n is prime, a problem for which we have
shown feasible probabilistic solutions.

Finding a proper prime divisor of a number n is equivalent to the
factoring problem, a problem believed to be intractable.
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Finding square roots

Testing if a number a is a quadratic residue modulo n is the same
thing as testing if it has a square root modulo n.

This problem is never harder than the problem of finding a square
root since, given an algorithm to find square roots, one can test if
a has a square root by trying to find it!

If the algorithm succeeds, then a is definitely a quadratic
residue.

If the algorithm fails, then either a doesn’t have a square root
or the algorithm doesn’t always work (and therefore isn’t
really a solution to the problem).
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Why do algorithms fail?

Assume we have an algorithm that always returns a square root of
a whenever a is a quadratic residue.

In order to infer that a is not a quadratic residue, we must be able
to detect that the algorithm has failed.

Possible indications of failure are:

it has explicitly halted with a failure indication,

it has produced an incorrect answer that we can verify is
wrong,

or it has already run longer on the given input than it runs on
any quadratic residue of the same length.
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Square roots with prime modulus

For p an odd prime, testing and finding square roots are both easy.

Testing Use Euler Criterion:
a ∈ QRp iff a(p−1)/2 ≡ 1 (mod p), p odd prime.

Finding Use Shank’s algorithm.

(See lecture 13.)
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Square roots with n = pq modulus, factorization known

For modulus n = pq the product of two known distinct odd primes
p and q, both can be reduced to corresponding cases for primes.

Testing Use fact that a is a quadratic residue modulo n iff it
is a quadratic residue modulo both p and q.

Finding Use the Chinese Remainder theorem to find a square
root of a (mod n) from square roots of a (mod p)
and a (mod q).

(See lecture 13 and lecture 14.)
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Square roots with n = pq modulus, factorization unknown

For modulus n = pq the product of two unknown distinct odd
primes, no feasible algorithm is known for testing existence of or
finding square roots modulo n of arbitrary numbers a.

Nevertheless, 1/2 of the numbers in Z∗n are easily shown not to be
quadratic residues modulo n.

Namely, numbers with Jacobi symbol
(

a
n

)
= −1 are not quadratic

residues modulo n.

These are exactly the numbers a ∈ Q01
n ∪ Q10

n which are quadratic
residues modulo one of p or q but not both.

The Jacobi symbol is easily computed. (See lecture 14.)
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Numbers with Jacobi symbol 1

The numbers in a ∈ Q00
n ∪ Q11

n all have Jacobi symbol 1.

Those in Q11 are quadratic residues; those in Q00 are not.

There is no known feasible algorithm for distinguishing these two
classes.

This is the basis for the Goldwasser-Micali cryptosystem presented
in lecture 13.
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Combining Signatures with Encryption
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Signed encrypted messages

One often wants to encrypt messages for privacy and sign them for
integrity and authenticity.

Let Alice have cryptosystem (E ,D) and signature system (S ,V ).
Some possibilities for encrypting and signing a message m:

1 Alice signs the encrypted message and sends the pair
(E (m), S(E (m))).

2 Alice encrypts the signed message and sends the result
E (m ◦ S(m)). Here we assume a standard way of representing
the ordered pair (m, S(m)) as a string, which we denote by
m ◦ S(m).

3 Alice separately encrypts and signs message and sends the
pair (E (m),S(m)).
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Weakness of encrypt-and-sign

Note that method 3, sending the pair (E (m),S(m)), is quite
problematic since signature functions make no guarantee of privacy.

We can construct a signature scheme (S ′,V ′) in which the
plaintext message is part of the signature itself.

If (S ′,V ′) is used as the signature scheme in method 3, there is no
privacy, for the plaintext message can be read directly from the
signature itself.
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A forgery-resistant signature scheme with no privacy

Example: Let (S ,V ) be an RSA signature scheme. Define

S ′(m) = m ◦ S(m) ;

V ′(m, s) = ∃t(s = m ◦ t ∧ V (m, t)) .

Fact

(S ′,V ′) is at least as secure as (S ,V ).

Suppose a forger produces a valid signed message (m, s) in
(S ′,V ′), so s = m ◦ t for some t and V (m, t) holds..

Then (m, t) is a valid signed message in (S ,V ).
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Encrypt or sign first?

Method 1 (encrypt first) allows Eve to verify that the signed
message was sent by Alice, even though Eve cannot read it.
Whether or not this is desirable is application-dependent.

Method 2 (sign first) forces Bob to decrypt a bogus message
before discovering that it wasn’t sent by Alice.

Subtleties emerge when cryptographic protocols are combined,
even in a simple case like this where it is only desired to combine
privacy with authentication.

Think about the pros and cons of other possibilities, such as
sign-encrypt-sign, i.e., (E (m ◦ S(m)),S(E (m ◦ S(m)))).
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ElGamal Signatures
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ElGamal signature scheme

The private signing key consists of a primitive root g of a prime p
and an exponent x .
The public verification key consists of g , p, and a = g x mod p.

To sign m:
1. Choose random y ∈ Z∗φ(p) .

2. Compute b = g y mod p.
3. Compute c = (m − xb)y−1 mod φ(p).
4. Output signature s = (b, c).

To verify (m, s), where s = (b, c):
1. Check that abbc ≡ gm (mod p).

abbc ≡ (g x)b(g y )c ≡ g xb+yc ≡ gm (mod p)

since xb + yc ≡ m (mod φ(p)).
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Digital Signature Algorithm (DSA)
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Digital signature standard

The commonly-used Digital Signature Algorithm (DSA) is a
variant of ElGamal signatures.

Also called the Digital Signature Standard (DSS), it is described in
U.S. Federal Information Processing Standard FIPS 186–3.1.

It uses two primes: p, which is 1024 bits long,2 and q, which is 160
bits long and satisfies q |(p − 1). Here’s how to find them: Choose
q first, then search for z such that zq + 1 is prime and of the right
length. Choose p = zq + 1 for such a z .

1Available at http://csrc.nist.gov/publications/fips/fips186-3/
fips 186-3.pdf

2The original standard specified that the length L of p should be a multiple
of 64 lying between 512 and 1024, and the length N of q should be 160.
Revision 2, Change Notice 1 increased L to 1024. Revision 3 allows four (L, N)
pairs: (1024, 160), (2048, 224), (2048, 256), (3072, 256).
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DSA key generation

Given primes p and q of the right lengths such that q |(p − 1),
here’s how to generate a DSA key.

Let g = h(p−1)/q mod p for any h ∈ Z∗p for which g > 1.

This ensures that g ∈ Z∗p is a non-trivial qth root of unity
modulo p.

Let x ∈ Z∗q.

Let a = g x mod p.

Private signing key: (p, q, g , x).

Public verification key: (p, q, g , a).
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DSA signing and verification

Here’s how signing and verification work:

To sign m:
1. Choose random y ∈ Z∗q.
2. Compute b = (g y mod p) mod q.
3. Compute c = (m + xb)y−1 mod q.
4. Output signature s = (b, c).

To verify (m, s), where s = (b, c):
1. Verify that b, c ∈ Z∗q; reject if not.
2. Compute u1 = mc−1 mod q.
3. Compute u2 = bc−1 mod q.
4. Compute v = (gu1au2 mod p) mod q.
5. Check v = b.
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Why DSA works

To see why this works, note that since gq ≡ 1 (mod p), then

r ≡ s (mod q) implies g r ≡ g s (mod p).

This follows from the fact that g is a qth root of unity modulo p,
so g r+uq ≡ g r (gq)u ≡ g r (mod p) for any u.
Hence,

gu1au2 ≡ gmc−1+xbc−1 ≡ g y (mod p). (1)

gu1au2 mod p = g y mod p (2)

v = (gu1au2 mod p) mod q = (g y mod p) mod q = b

as desired. (Notice the shift between equivalence modulo p in
equation 1 and equality of remainders modulo p in equation 2.)
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Double remaindering

DSA uses the technique of computing a number modulo p and
then modulo q.

Call this function fp,q(n) = (n mod p) mod q.

fp,q(n) is not the same as n mod r for any modulus r , nor is it the
same as fq,p(n) = (n mod q) mod p.
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Example mod 29 mod 7

To understand better what’s going on, let’s look at an example.
Take p = 29 and q = 7. Then 7|(29− 1), so this is a valid DSA
prime pair. The table below lists the first 29 values of y = f29,7(n):

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
y 0 1 2 3 4 5 6 0 1 2 3 4 5 6

n 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

y 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0

The sequence of function values repeats after this point with a
period of length 29. Note that it both begins and ends with 0, so
there is a double 0 every 29 values. That behavior cannot occur
modulo any number r . That behavior is also different from
f7,29(n), which is equal to n mod 7 and has period 7. (Why?)
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Common Hash Functions
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Common hash function

Many cryptographic hash functions are currently in use.

For example, the openssl library includes implementations of MD2,
MD4, MD5, MDC2, RIPEMD, SHA, SHA–1, SHA–256, SHA–384,
and SHA–512.

The SHA–xxx methods are recommended for new applications, but
these other functions are also in widespread use.
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SHA-1

The revised Secure Hash Algorithm (SHA–1) is one of five
algorithms described in U. S. Federal Information Processing
Standard FIPS PUB 180–3 (Secure Hash Standard).3 It states,

“Secure hash algorithms are typically used with other
cryptographic algorithms, such as digital signature
algorithms and keyed-hash message authentication codes,
or in the generation of random numbers (bits).”

SHA–1 produces a 160-bit message digest. The other algorithms in
the SHA–xxx family produce longer message digests.

3Available at http://csrc.nist.gov/publications/fips/fips180-3/
fips180-3 final.pdf.
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MD5 overview

MD5 is an older algorithm (1992) devised by Rivest. We present
an overview of it here.

It generates a 128-bit message digest from an input message of
any length. It is built from a basic block function

g : 128-bit× 512-bit→ 128-bit.

The MD5 hash function h is obtained as follows:

The original message is padded to length a multiple of 512.

The result m is split into a sequence of 512-bit blocks
m1,m2, . . . ,mk .

h is computed by chaining g on the first argument.

We next look at these steps in greater detail.

Michael J. Fischer CPSC 467b, Lecture 16 30/35



Outline Review Signed & encrypted ElGamal sigs DSA Hash

MD5 padding

As with block encryption, it is important that the padding function
be one-to-one, but for a different reason.

For encryption, the one-to-one property is what allows unique
decryption.

For a hash function, it prevents there from being trivial colliding
pairs.

For example, if the last partial block is simply padded with 0’s,
then all prefixes of the last message block will become the same
after padding and will therefore collide with each other.
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MD5 chaining

The function h can be regarded as a state machine, where the
states are 128-bit strings and the inputs to the machine are 512-bit
blocks.

The machine starts in state s0, specified by an initialization vector
IV.

Each input block mi takes the machine from state si−1 to new
state si = g(si−1,mi ).

The last state sk is the output of h, that is,

h(m1m2 . . .mk−1mk) = g(g(. . . g(g(IV ,m1),m2) . . . ,mk−1),mk).
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MD5 block function

The block function g(s, b) is built from a scrambling function
g ′(s, b) that regards s and b as sequences of 32-bit words and
returns four 32-bit words as its result.

Suppose s = s1s2s3s4 and g ′(s, b) = s ′1s
′
2s
′
3s
′
4.

We define

g(s, b) = (s1 + s ′1) · (s2 + s ′2) · (s3 + s ′3) · (s4 + s ′4),

where “+” means addition modulo 232 and “·” is concatenation of
the representations of integers as 32-bit binary strings.
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MD5 scrambling function

The computation of the scrambling function g ′(s, b) consists of 4
stages, each consisting of 16 substages.

We divide the 512-bit block b into 32-bit words b1b2 . . . b16.

Each of the 16 substages of stage i uses one of the 32-bit words of
b, but the order they are used is defined by a permutation πi that
depends on i .

In particular, substage j of stage i uses word b`, where ` = πi (j) to
update the state vector s.

The new state is fi ,j(s, b`), where fi ,j is a bit-scrambling function
that depends on i and j .
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Further remarks on MD5

We omit further details of the bit-scrambling functions fi ,j ,

However, note that the state s can be represented by four 32-bit
words, so the arguments to fi ,j occupy only 5 machine words.
These easily fit into the high-speed registers of modern processors.

The definitive specification for MD5 is RFC1321 and errata. A
general discussion of MD5 along with links to recent work and
security issues can be found on Wikipedia.

Although MD5 is widely used, recent attacks by Xiaoyun Wang
and Hongbo Yu show that it is not collision resistant and hence no
longer suitable for most cryptographic uses.
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