
Outline PRSG

CPSC 467b: Cryptography and Computer Security
Lecture 21

Michael J. Fischer

Department of Computer Science
Yale University

April 7, 2010

Michael J. Fischer CPSC 467b, Lecture 21 1/25

Outline PRSG

1 Pseudorandom Sequence Generation
Concepts of Pseudorandomness
BBS Pseudorandom Sequence Generator

Michael J. Fischer CPSC 467b, Lecture 21 2/25

Outline PRSG Concepts BBS

Pseudorandom Sequence Generation

Michael J. Fischer CPSC 467b, Lecture 21 3/25

Outline PRSG Concepts BBS

Pseudorandom sequence generators revisited

Cryptographically strong pseudorandom sequence generators were
introduced in Lecture 6 in connection with stream ciphers.

We now show how to build one that is provably secure.

It uses the quadratic residuosity assumption (Lecture 13) on which
the Goldwasser-Micali probabilistic cryptosystem is based.

Michael J. Fischer CPSC 467b, Lecture 21 4/25

Outline PRSG Concepts BBS

Desired properties of a PRSG

A pseudorandom sequence generator (PRSG) maps a “short”
random seed to a “long” pseudorandom bit string.

We want a PRSG to be cryptographically strong, that is, it must
be difficult to correctly predict any generated bit, even knowing all
of the other bits of the output sequence.

In particular, it must also be difficult to find the seed given the
output sequence, since otherwise, the whole sequence is easily
generated.

Thus, a PRSG is a one-way function and more.

Note: While a hash function might generate hash values of the
form yy and still be strongly collision-free, such a function could
not be a PRSG since it would be possible to predict the second
half of the output knowing the first half.

Michael J. Fischer CPSC 467b, Lecture 21 5/25

Outline PRSG Concepts BBS

Expansion amount

I am being intentionally vague about how much expansion we
expect from a PRSG that maps a “short” seed to a “long”
pseudorandom sequence.

Intuitively, “short” is a length like we use for cryptographic
keys—long enough to prevent brute-force attacks, but generally
much shorter than the data we want to deal with. Typical seed
lengths might range from 128 to 2048.

By “long”, we mean much larger sizes, perhaps thousands or even
millions of bits, but polynomially related to the seed length.

Michael J. Fischer CPSC 467b, Lecture 21 6/25

Outline PRSG Concepts BBS

Incremental generators

In practice, the output length is usually variable. We can request
as many output bits from the generator as we like (within limits),
and it will deliver them.

In this case, “long” refers to the maximum number of bits that can
be delivered while still maintaining security.

Also, in practice, the bits are generally delivered a few at a time
rather than all at once, so we don’t need to announce in advance
how many bits we want but can go back as needed to get more.

Michael J. Fischer CPSC 467b, Lecture 21 7/25

Outline PRSG Concepts BBS

Notation for PRSG’s

In a little more detail, a pseudorandom sequence generator G is a
function from a domain of seeds S to a domain of strings X .

We will generally assume that all of the seeds in S have the same
length n and that X is the set of all binary strings of length
` = `(n), where `(·) is a polynomial and n� `(n).

`(·) is called the expansion factor of G .

Michael J. Fischer CPSC 467b, Lecture 21 8/25

Outline PRSG Concepts BBS

What does it mean for a string to look random?

Intuitively, we want the strings G (s) to “look random”.
But what does it mean to “look random”?

Chaitin and Kolmogorov defined a string to be “random”if its
shortest description is almost as long as the string itself.

By this definition, most strings are random by a simple counting
argument.

For example, 011011011011011011011011011 is easily described as
the pattern 011 repeated 9 times. On the other hand,
101110100010100101001000001 has no obvious short description.

While philosophically very interesting, these notions are somewhat
different than the statistical notions that most people mean by
randomness and do not seem to be useful for cryptography.

Michael J. Fischer CPSC 467b, Lecture 21 9/25

Outline PRSG Concepts BBS

Randomness based on probability theory

We take a different tack.

We assume that the seeds are chosen truly at random from S
according to the uniform distribution.

Let S be a uniformly distributed random variable over S.

Then X ∈ X is a derived random variable defined by X = G (S).

For x ∈ X ,

P[X = x] =
|{s ∈ S | G (s) = x}|

|S|
.

Thus, P[X = x] is the probability of obtaining x as the output of
the PRSG for a randomly chosen seed.

Michael J. Fischer CPSC 467b, Lecture 21 10/25

Outline PRSG Concepts BBS

Randomness amplifier

We think of G (·) as a randomness amplifier.

We start with a short truly random seed and obtain a long string
that “looks like” a random string, even though we know it’s not
uniformly distributed.

In fact, the distribution G (S) is very much non-uniform.

Because |S| ≤ 2n, |X | = 2`, and n� `, most strings in X are not
in the range of G and hence have probability 0.

For the uniform distribution U over X , all strings have the same
non-zero probability 1/2`.

U is what we usually mean by a truly random variable on `-bit
strings.

Michael J. Fischer CPSC 467b, Lecture 21 11/25

Outline PRSG Concepts BBS

Computational indistinguishability

We have already seen that the probability distributions of
X = G (S) and U are quite different.

Nevertheless, it may be the case that all feasible probabilistic
algorithms behave essentially the same whether given a sample
chosen according to X or a sample chosen according to U.

If that is the case, we say that X and U are computationally
indistinguishable and that G is a cryptographically strong
pseudorandom sequence generator.

Michael J. Fischer CPSC 467b, Lecture 21 12/25

Outline PRSG Concepts BBS

Some implications of computational indistinguishability

Before going further, let me describe some functions G for which
G (S) is readily distinguished from U.

Suppose every string x = G (s) has the form b1b1b2b2b3b3 . . ., for
example 0011111100001100110000. . . .

Algorithm A(x) outputs “G” if x is of the special form above, and
it outputs “U”otherwise.

A will always guess correctly for inputs from G (S), and its error
probability on strings from U is only

2`/2

2`
=

1

2`/2
.

Michael J. Fischer CPSC 467b, Lecture 21 13/25

Outline PRSG Concepts BBS

Judges

Formally, a judge is a probabilistic algorithm J that takes an `-bit
string as input and produces a single bit b as output.

Thus, it defines a random function from X to {0, 1}.

This means that for every input x , the output is 1 with some
probability px , and the output is 0 with probability 1− px .

If the input string is a random variable X , then the probability that
the output is 1 is the weighted sum of px over all possible inputs x ,
where the weight is the probability P[X = x] of input x occurring.

Thus, the output value is itself a random variable J(X), where

P[J(X) = 1] =
∑
x∈X

P[X = x] · px .

Michael J. Fischer CPSC 467b, Lecture 21 14/25

Outline PRSG Concepts BBS

Formal definition of indistinguishability

Two random variables X and Y are ε-indistinguishable by judge J if

|P[J(X) = 1]− P[J(Y) = 1]| < ε.

Intuitively, we say that G is cryptographically strong if G (S) and U
are ε-indistinguishable for suitably small ε by all judges that do not
run for too long.

A careful mathematical treatment of the concept of
indistinguishability must relate the length parameters n and `, the
error parameter ε, and the allowed running time of the judges

Further formal details may be found in Katz and Lindell and in
handout 14.

Michael J. Fischer CPSC 467b, Lecture 21 15/25

http://zoo.cs.yale.edu/classes/cs467/2010s/handouts/ho14.pdf

Outline PRSG Concepts BBS

BBS Pseudorandom Sequence Generator

Michael J. Fischer CPSC 467b, Lecture 21 16/25

Outline PRSG Concepts BBS

A cryptographically strong PRSG

We present a cryptographically strong pseudorandom sequence
generator due to Blum, Blum, and Shub (BBS).

BBS is defined by a Blum integer n = pq and an integer `.

It maps strings in Z∗n to strings in {0, 1}`.

Given a seed s0 ∈ Z∗n, we define a sequence s1, s2, s3, . . . , s`, where
si = s2

i−1 mod n for i = 1, . . . , `.

The `-bit output sequence BBS(s0) is b1, b2, b3, . . . , b` , where
bi = lsb(si) is the least significant bit of si .

Michael J. Fischer CPSC 467b, Lecture 21 17/25

Outline PRSG Concepts BBS

Recall QR assumption and Blum integers

The security of BBS is based on the assumed difficulty of
determining, for a given a ∈ Z∗n with Jacobi symbol 1, whether or
not a is a quadratic residue, i.e., whether or not a ∈ QRn.

Recall from Lecture 20 that a Blum prime is a prime p such p ≡ 3
(mod 4), and a Blum integer is a number n = pq, where p and q
are distinct Blum primes.

Also, Blum primes and Blum integers have the important property
that every quadratic residue a has exactly one square root y which
is itself a quadratic residue.

Call such a y the principal square root of a and denote it by
√

a
(mod n) or simply by

√
a when it is clear that mod n is intended.

Michael J. Fischer CPSC 467b, Lecture 21 18/25

Outline PRSG Concepts BBS

Facts about Blum integers - Jacobi symbol

Fact

Let n be a Blum integer and a ∈ QRn. Then
(

a
n

)
=
(−a

n

)
= 1.

Proof.

This follows from the fact that if a is a quadratic residue modulo a
Blum prime, then −a is a quadratic non-residue. Hence,(

a

p

)
= −

(
−a

p

)
and

(
a

q

)
= −

(
−a

q

)
, so

(a

n

)
=

(
a

p

)
·
(

a

q

)
=

(
−
(
−a

p

))
·
(
−
(
−a

q

))
=

(
−a

n

)
.

Michael J. Fischer CPSC 467b, Lecture 21 19/25

Outline PRSG Concepts BBS

Facts about Blum integers - lsb

The second fact simply says that the low-order bits of x mod n and
(−x) mod n always differ when n is odd.

Let lsb(x) = (x mod 2) be the least significant bit of integer x .

Fact

Let n be odd. Then lsb(x mod n)⊕ lsb((−x) mod n) = 1.

Michael J. Fischer CPSC 467b, Lecture 21 20/25

Outline PRSG Concepts BBS

First-bit prediction

A first-bit predictor with advantage ε is a probabilistic polynomial
time algorithm A that, given b2, . . . , b`, correctly predicts b1 with
probability at least 1/2 + ε.

This is not sufficient to establish that the pseudorandom sequence
BBS(S) is indistinguishable from the uniform random sequence U,
but if it did not hold, there certainly would exist a distinguishing
judge.

Namely, the judge that outputs 1 if b1 = A(b2, . . . , b`) and 0
otherwise would output 1 with probability greater than 1/2 + ε in
the case that the sequence came from BBS(S) and would output 1
with probability exactly 1/2 in the case that the sequence was truly
random.

Michael J. Fischer CPSC 467b, Lecture 21 21/25

Outline PRSG Concepts BBS

BBS has no first-bit predictor under the QR assumption

If BBS has a first-bit predictor A with advantage ε, then there is a
probabilistic polynomial time algorithm Q for testing quadratic
residuosity with the same accuracy.

Thus, if quadratic-residue-testing is “hard”, then so is first-bit
prediction for BBS.

Theorem

Let A be a first-bit predictor for BBS(S) with advantage ε. Then
we can find an algorithm Q for testing whether a number x with
Jacobi symbol 1 is a quadratic residue, and Q will be correct with
probability at least 1/2 + ε.

Michael J. Fischer CPSC 467b, Lecture 21 22/25

Outline PRSG Concepts BBS

Construction of Q

Assume that A predicts b1 given b2, . . . , b`.

Algorithm Q(x) tests whether or not a number x with Jacobi
symbol 1 is a quadratic residue modulo n.

It outputs 1 to mean x ∈ QRn and 0 to mean x 6∈ QRn.

To Q(x):
1. Let ŝ2 = x2 mod n.
2. Let ŝi = ŝ2

i−1 mod n, for i = 3, . . . , `.

3. Let b̂1 = lsb(x).

4. Let b̂i = lsb(ŝi), for i = 2, . . . , `.

5. Let c = A(b̂2, . . . , b̂`).

6. If c = b̂1 then output 1; else output 0.

Michael J. Fischer CPSC 467b, Lecture 21 23/25

Outline PRSG Concepts BBS

Why Q works

Since
(

x
n

)
= 1, then either x or −x is a quadratic residue. Let s0

be the principal square root of x or −x . Let s1, . . . , s` be the state
sequence and b1, . . . , b` the corresponding output bits of BBS(s0).

We have two cases.

Case 1: x ∈ QRn. Then s1 = x , so the state sequence of BBS(s0)
is

s1, s2, . . . , s` = x , ŝ2, . . . , ŝ`,

and the corresponding output sequence is

b1, b2, . . . , b` = b̂1, b̂2, . . . , b̂`.

Since b̂1 = b1, Q(x) correctly outputs 1 whenever A correctly
predicts b1. This happens with probability at least 1/2 + ε.

Michael J. Fischer CPSC 467b, Lecture 21 24/25

Outline PRSG Concepts BBS

Why Q works (cont.)

Case 2: x ∈ QNRn, so −x ∈ QRn. Then s1 = −x , so the state
sequence of BBS(s0) is

s1, s2, . . . , s` = −x , ŝ2, . . . , ŝ`,

and the corresponding output sequence is

b1, b2, . . . , b` = ¬b̂1, b̂2, . . . , b̂`.

Since b̂1 = ¬b1, Q(x) correctly outputs 0 whenever A correctly
predicts b1. This happens with probability at least 1/2 + ε.
In both cases, Q(x) gives the correct output with probability at
least 1/2 + ε.

Michael J. Fischer CPSC 467b, Lecture 21 25/25

	Outline
	Pseudorandom Sequence Generation
	Concepts of Pseudorandomness
	BBS Pseudorandom Sequence Generator

