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Number theory needed for RSA

Here’s a summary of the number theory needed to understand RSA
and its associate algorithms.

I Greatest common divisor, Zn, modn, φ(n), Z∗n, and how to
add, subtract, multiply, and find inverses mod n.

I Euler’s theorem: aφ(n) ≡ 1 (mod n) for a ∈ Z∗n.

I How to generate large prime numbers: density of primes and
testing primality.
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How these facts apply to RSA
I The RSA key pair (e, d) is chosen to satisfy the modular

equation ed ≡ 1 (mod φ(n)).
I To find (e, d), we repeatedly choose e at random from Zn

until we find one in Z∗n, and then solve the modular equation
ed ≡ 1 (mod φ(n)) for d . We compute gcd to test for
membership in Z∗n.

I Using Euler’s theorem, we can show med ≡ m (mod n) for all
m ∈ Z∗n. This implies Dd(Ee(m)) = m. To show that
decryption works even in the rare case that m ∈ Zn − Z∗n
requires some more number theory that we will omit.

I To find p and q, we choose large numbers and test each for
primality until we find two distinct primes. We must show
that the density of primes is large enough for this procedure to
be feasible.
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Zn: The integers mod n
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Modular arithmetic

The mod relation

We just saw that mod is a binary operation on integers.

Mod is also used to denote a relationship on integers:

a ≡ b (mod n) iff n |(a− b).

That is, a and b have the same remainder when divided by n. An
immediate consequence of this definition is that

a ≡ b (mod n) iff (a mod n) = (b mod n).

Thus, the two notions of mod aren’t so different after all!

We sometimes write a ≡n b to mean a ≡ b (mod n).
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Modular arithmetic

Mod is an equivalence relation

The two-place relationship ≡n is an equivalence relation.

Its equivalence classes are called residue classes modulo n and are
denoted by [b]≡n = {a | a ≡ b (mod n)} or simply by [b].

For example, if n = 7, then [10] = {. . .− 11,−4, 3, 10, 17, . . .}.

Fact
[a] = [b] iff a ≡ b (mod n).
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Modular arithmetic

Canonical names

If x ∈ [b], then x is said to be a representative or name of the
equivalence class [b]. Obviously, b is a representative of [b].
Thus, [−11], [−4], [3], [10], [17] are all names for the same
equivalence class.

The canonical or preferred name for the class [b] is the unique
integer in [b] ∩ {0, 1, . . . , n − 1}.

Thus, the canonical name for [10] is 10 mod 7 = 3.
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Modular arithmetic

Mod is a congruence relation
The relation ≡n is a congruence relation with respect to addition,
subtraction, and multiplication of integers.

Fact
For each arithmetic operation � ∈ {+,−,×}, if a ≡ a′ (mod n)
and b ≡ b′ (mod n), then

a� b ≡ a′ � b′ (mod n).

The class containing the result of a� b depends only on the
classes to which a and b belong and not the particular
representatives chosen.

Hence, we can perform arithmetic on equivalence classes by
operating on their names.
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GCD

Greatest common divisor

Definition
The greatest common divisor of two integers a and b, written
gcd(a, b), is the largest integer d such that d |a and d |b.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of
every integer, and the divisor of a non-zero number cannot be
larger (in absolute value) than the number itself.

Question: Why isn’t gcd(0, 0) well defined?

CPSC 467b, Lecture 8 11/42



Outline RSA Zn Computing in Zn RSA exponents

GCD

Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form.

Namely, let pi be the i th prime. Write a =
∏

pei
i and b =

∏
p fi
i .

Then
gcd(a, b) =

∏
p

min(ei ,fi )
i .

Example: 168 = 23 · 3 · 7 and 450 = 2 · 32 · 52, so
gcd(168, 450) = 2 · 3 = 6.

However, factoring is believed to be a hard problem, and no
polynomial-time factorization algorithm is currently known. (If it
were easy, then Eve could use it to break RSA, and RSA would be
of no interest as a cryptosystem.)
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GCD

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the
need to factor a and b using the famous Euclidean algorithm.

Euclid’s algorithm is remarkable, not only because it was
discovered a very long time ago, but also because it works without
knowing the factorization of a and b.

CPSC 467b, Lecture 8 13/42



Outline RSA Zn Computing in Zn RSA exponents

GCD

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the
gcd function. In the following, assume a > 0 and a ≥ b ≥ 0:

gcd(a, b) = gcd(b, a) (1)

gcd(a, 0) = a (2)

gcd(a, b) = gcd(a− b, b) (3)

Identity 1 is obvious from the definition of gcd. Identity 2 follows
from the fact that every positive integer divides 0. Identity 3
follows from the basic fact relating divides and addition from
lecture 7.
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GCD

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b)
to be reduced to the problem of computing gcd(a− b, b).

The new problem is “smaller” as long as b > 0.

The size of the problem gcd(a, b) is |a|+ |b|, the sum of the two
arguments. This leads to an easy recursive algorithm.

int gcd(int a, int b)
{
if ( a < b ) return gcd(b, a);
else if ( b == 0 ) return a;
else return gcd(a-b, b);

}
Nevertheless, this algorithm is not very efficient, as you will quickly
discover if you attempt to use it, say, to compute gcd(1000000, 2).
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GCD

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can’t be
applied any more produces the sequence of pairs

(a, b), (a− b, b), (a− 2b, b), . . . , (a− qb, b).

The sequence stops when a− qb < b.

How many times you can subtract b from a while remaining
non-negative?
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GCD

Using division in place of repeated subtractions

The number of times is the quotient ba/bc.

The amout a− qb that is left after q subtractions is just the
remainder a mod b.

Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b), giving the identity

gcd(a, b) = gcd(a mod b, b). (4)
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GCD

Full Euclidean algorithm
Recall the inefficient GCD algorithm.
int gcd(int a, int b) {
if ( a < b ) return gcd(b, a);
else if ( b == 0 ) return a;
else return gcd(a-b, b);

}

The following algorithm is exponentially faster.
int gcd(int a, int b) {
if ( b == 0 ) return a;
else return gcd(b, a%b);

}

Principal change: Replace gcd(a-b,b) with gcd(b, a%b).
Besides collapsing repeated subtractions, we have a ≥ b for all but
the top-level call on gcd(a, b). This eliminates roughly half of the
remaining recursive calls.
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GCD

Complexity of GCD

The new algorithm requires at most in O(n) stages, where n is the
sum of the lengths of a and b when written in binary notation, and
each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

int gcd(int a, int b) {
int aa;
while (b > 0) {
aa = a;
a = b;
b = aa % b;

}
return a;

}
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Relatively prime numbers, Z∗n , and φ(n)

Relatively prime numbers

Two integers a and b are relatively prime if they have no common
prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let Z∗n be the set of integers in Zn that are relatively prime to n, so

Z∗n = {a ∈ Zn | gcd(a, n) = 1}.
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Relatively prime numbers, Z∗n , and φ(n)

Euler’s totient function φ(n)
φ(n) is the cardinality (number of elements) of Z∗n, i.e.,

φ(n) = |Z∗n|.

Properties of φ(n):

1. If p is prime, then
φ(p) = p − 1.

2. More generally, if p is prime and k ≥ 1, then

φ(pk) = pk − pk−1 = (p − 1)pk−1.

3. If gcd(m, n) = 1, then

φ(mn) = φ(m)φ(n).
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Relatively prime numbers, Z∗n , and φ(n)

Example: φ(26)

Can compute φ(n) for all n ≥ 1 given the factorization of n.

φ(126) = φ(2) · φ(32) · φ(7)

= (2− 1) · (3− 1)(32−1) · (7− 1)

= 1 · 2 · 3 · 6 = 36.

The 36 elements of Z∗126 are:

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53,
55, 59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101,
103, 107, 109, 113, 115, 121, 125.
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Relatively prime numbers, Z∗n , and φ(n)

A formula for φ(n)

Here is an explicit formula for φ(n).

Theorem
Write n in factored form, so n = pe1

1 · · · p
ek
k , where p1, . . . , pk are

distinct primes and e1, . . . , ek are positive integers.1 Then

φ(n) = (p1 − 1) · pe1−1
1 · · · (pk − 1) · pek−1

k .

For the product of distinct primes p and q,

φ(pq) = (p − 1)(q − 1).

1By the fundamental theorem of arithmetic, every integer can be written
uniquely in this way up to the ordering of the factors.
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Computing in Zn
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Modular multiplication

Multiplication modulo n

Theorem
Z∗n is closed under multiplication modulo n.

This says, if a and b are both in Z∗n, then (ab mod n) is also in Z∗n.

Proof.
If neither a nor b share a prime factor with n, then neither does
their product ab.
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Modular multiplication

Example: Multiplication in Z∗26

Let n = 26 = 2 · 13. Then

Z∗26 = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}
φ(26) = |Z∗26| = 12.

Multiplication examples:

5× 7 mod 26 = 35 mod 26 = 9.

3× 25 mod 26 = 75 mod 26 = 23.

9× 3 mod 26 = 27 mod 26 = 1.

We say that 3 is the multiplicative inverse of 9 in Z∗26.
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Modular inverses

Example: Inverses the elements in Z∗26.

x 1 3 5 7 9 11 15 17 19 21 23 25

x−1 1 9 21 15 3 19 7 23 11 5 17 25

≡n 1 9 −5 −11 3 −7 7 −3 11 5 −9 −1

Bottom row gives equivalent integers in range [−12, . . . , 13].

Note that (26− x)−1 = −x−1.

Hence, last row reads same back to front except for change of sign.

Once the inverses for the first six numbers are known, the rest of
the table is easily filled in.
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Modular inverses

Finding modular inverses

Let u ∈ Z∗n. We wish to find u−1 modulo n.

By definition, u−1 is the element v ∈ Z∗n (if it exists) such that

uv ≡ 1 (mod n).

This equation holds iff n |(uv − 1) iff uv − 1 = qn for some
integer q (positive or negative).

We can rewrite this equation as

uv − nq = 1. (5)

u and n are given and v and q are unknowns. If we succeed in
finding a solution over the integers, then v is the desired
inverse u−1.
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Modular inverses

Diophantine equations

A Diophantine equation is a linear equation in two unknowns over
the integers.

ax + by = c (6)

Here, a, b, c are given integers. A solution consists of integer
values for the unknowns x and y that make (6) true.

We see that equation 5 fits the general form for a Diophantine
equation, where

a = u
b = −n
c = 1

(7)
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Modular inverses

Existence of solution

Theorem
The Diophantine equation

ax + by = c

has a solution over Z (the integers) iff gcd(a, b) |c.

It can be solved by a process akin to the Euclidean algorithm,
which we call the Extended Euclidean algorithm.
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Extended Euclidean algorithm

Extended Euclidean algorithm

The algorithm generates a sequence of triples of numbers
Ti = (ri , ui , vi ), each satisfying the invariant

ri = aui + bvi ≥ 0. (8)

T1 =

{
(a, 1, 0) if a ≥ 0
(−a,−1, 0) if a < 0

T2 =

{
(b, 0, 1) if b ≥ 0
(−b, 0,−1) if b < 0
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Extended Euclidean algorithm

Extended Euclidean algorithm

The algorithm generates a sequence of triples of numbers
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Extended Euclidean algorithm

Extended Euclidean algorithm

ri = aui + bvi ≥ 0. (8)

Ti+2 is obtained by subtracting a multiple of Ti+1 from from Ti so
that ri+2 < ri+1. This is similar to the way the Euclidean algorithm
obtains (a mod b) from a and b.

In detail, let qi+1 = bri/ri+1c. Then Ti+2 = Ti − qi+1Ti+1, so

ri+2 = ri − qi+1ri+1 = ri mod ri+1

ui+2 = ui − qi+1ui+1

vi+2 = vi − qi+1vi+1

The sequence of generated pairs (r1, r2), (r2, r3), (r3, r4), . . . is
exactly the same as the sequence generated by the Euclidean
algorithm. We stop when rt = 0. Then rt−1 = gcd(a, b).
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Extended Euclidean algorithm

Extended Euclidean algorithm
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Extended Euclidean algorithm

Extended Euclidean algorithm
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Extended Euclidean algorithm

Extended Euclidean algorithm

ri = aui + bvi ≥ 0. (8)

From (8) it follows that

gcd(a, b) = aut−1 + bvt−1 (9)
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Extended Euclidean algorithm

Finding all solutions

Returning to the original equation,

ax + by = c (6)

if c = gcd(a, b), then x = ut−1 and y = vt−1 is a solution.

If c = k · gcd(a, b) is a multiple of gcd(a, b), then x = kut−1 and
y = kvt−1 is a solution.

Otherwise, gcd(a, b) does not divide c, and one can show that (6)
has no solution.

CPSC 467b, Lecture 8 32/42



Outline RSA Zn Computing in Zn RSA exponents

Extended Euclidean algorithm

Example of extended Euclidean algorithm

Suppose one wants to solve the equation

31x − 45y = 3 (10)

Here, a = 31 and b = −45. We begin with the triples

T1 = (31, 1, 0)

T2 = (45, 0,−1)
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Extended Euclidean algorithm

Computing the triples

The computation is shown in the following table:

i ri ui vi qi

1 31 1 0
2 45 0 −1 0
3 31 1 0 1
4 14 −1 −1 2
5 3 3 2 4
6 2 −13 −9 1
7 1 16 11 2
8 0 −45 −31
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Extended Euclidean algorithm

Extracting the solution

From T7 = (1, 16, 11), we obtain the solution x = 16 and y = 11
to the equation

1 = 31x − 45y

We can check this by substituting for x and y :

31 · 16 + (−45) · 11 = 496− 495 = 1.

The solution to
31x − 45y = 3 (10)

is then x = 3 · 16 = 48 and y = 3 · 11 = 33.
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Generating RSA Encryption and Decryption

Exponents
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Recall RSA exponent requirement

Recall that the RSA encryption and decryption exponents must be
chosen so that

ed ≡ 1 (mod φ(n)), (11)

that is, d is e−1 in Z∗φ(n).

How does Alice choose e and d to satisfy (11)?

I Choose a random integer e ∈ Z∗φ(n).

I Solve (11) for d .

We know now how to solve (11), but how does Alice sample at
random from Z∗φ(n)?
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Sampling from Z∗n

If Z∗φ(n) is large enough, Alice can just choose random elements
from Zφ(n) until she encounters one that also lies in Z∗φ(n).

A candidate element e lies in Z∗φ(n) iff gcd(e, φ(n)) = 1, which can

be computed efficiently using the Euclidean algorithm.2

2φ(n) itself is easily computed for an RSA modulus n = pq since
φ(n) = (p − 1)(q − 1) and Alice knows p and q.
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How large is large enough?

If φ(φ(n)) (the size of Z∗φ(n)) is much smaller than φ(n) (the size

of Zφ(n)), Alice might have to search for a long time before finding
a suitable candidate for e.

In general, Z∗m can be considerably smaller than m.
Example:

m = |Zm| = 2 · 3 · 5 · 7 = 210
φ(m) = |Z∗m| = 1 · 2 · 4 · 6 = 48.

In this case, the probability that a randomly-chosen element of Zm

falls in Z∗m is only 48/210 = 8/35 = 0.228 . . . .
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A lower bound on φ(m)/m

The following theorem provides a crude lower bound on how small
Z∗m can be relative to the size of Zm.

Theorem
For all m ≥ 2,

|Z∗m|
|Zm|

≥ 1

1 + blog2 mc
.
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Proof.

Write m =
∏t

i=1 pei
i , where pi is the i th prime that divides m and

ei ≥ 1. Then φ(m) =
∏t

i=1(pi − 1)pei−1
i , so

|Z∗m|
|Zm|

=
φ(m)

m
=

∏t
i=1(pi − 1)pei−1

i∏t
i=1 pei

i

=
t∏

i=1

(
pi − 1

pi

)
. (12)

t∏
i=1

(
pi − 1

pi

)
≥

t∏
i=1

(
i

i + 1

)
=

1

2
· 2

3
· 3

4
· · · t

t + 1
=

1

t + 1
. (13)
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Proof.

|Z∗m|
|Zm|

=
φ(m)

m
=

∏t
i=1(pi − 1)pei−1

i∏t
i=1 pei

i

=
t∏

i=1

(
pi − 1

pi

)
. (12)

To estimate the size of
∏t

i=1(pi − 1)/pi , note that(
pi − 1

pi

)
≥
(

i

i + 1

)
.

This follows since (x − 1)/x is monotonic increasing in x , and
pi ≥ i + 1. Then

t∏
i=1

(
pi − 1

pi

)
≥

t∏
i=1

(
i

i + 1

)
=

1

2
· 2

3
· 3

4
· · · t

t + 1
=

1

t + 1
. (13)
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Proof.

|Z∗m|
|Zm|

=
φ(m)

m
=

∏t
i=1(pi − 1)pei−1

i∏t
i=1 pei

i

=
t∏

i=1

(
pi − 1

pi

)
. (12)

t∏
i=1

(
pi − 1

pi

)
≥

t∏
i=1

(
i

i + 1

)
=

1

2
· 2

3
· 3

4
· · · t

t + 1
=

1

t + 1
. (13)

Clearly t ≤ blog2 mc since 2t ≤
∏t

i=1 pi ≤ m and t is an integer.

Combining this with equations (12) and (13) gives the desired
result.

|Z∗m|
|Zm|

≥ 1

t + 1
≥ 1

1 + blog2 mc
. (14)
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Expected difficulty of choosing RSA exponent e

For n a 1024-bit integer, φ(n) < n < 21024.

Hence, log2(φ(n)) < 1024, so blog2(φ(n))c ≤ 1023.

By the theorem, the fraction of elements in Zφ(n) that also lie in
Z∗φ(n) is at least

1

1 + blog2 φ(n)c
≥ 1

1024
.

Therefore, the expected number of random trials before Alice finds
a number in Z∗φ(n) is provably at most 1024 and is likely much
smaller.
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