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Pseudorandom sequence generators revisited

Cryptographically strong pseudorandom sequence generators were
introduced in Lecture 6 in connection with stream ciphers.

We next define carefully what it means for a pseudorandom
sequence generator (PRSG) to be cryptographically strong.

We then show how to build one that is provably secure. It is based
on the quadratic residuosity assumption (Lecture 14) on which the
Goldwasser-Micali probabilistic cryptosystem is based.
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Desired properties of a PRSG
A pseudorandom sequence generator (PRSG) maps a “short”
random seed to a “long” pseudorandom bit string.

We want a PRSG to be cryptographically strong, that is, it must
be difficult to correctly predict any generated bit, even knowing all
of the other bits of the output sequence.

In particular, it must also be difficult to find the seed given the
output sequence, since otherwise the whole sequence is easily
generated.

Thus, a PRSG is a one-way function and more.

Note: While a hash function might generate hash values of the form yy
and still be strongly collision-free, such a function could not be a PRSG
since it would be possible to predict the second half of the output
knowing the first half.
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Expansion amount

I am being intentionally vague about how much expansion we
expect from a PRSG that maps a “short” seed to a “long”
pseudorandom sequence.

Intuitively, “short” is a length like we use for cryptographic
keys—long enough to prevent brute-force attacks, but generally
much shorter than the data we want to deal with. Typical seed
lengths might range from 128 to 2048.

By “long”, we mean much larger sizes, perhaps thousands or even
millions of bits, but polynomially related to the seed length.

CPSC 467b, Lecture 18 6/41



Outline PRSG BBS Bit-prediction

Incremental generators

In practice, the output length is usually variable. We can request
as many output bits from the generator as we like (within limits),
and it will deliver them.

In this case, “long” refers to the maximum number of bits that can
be delivered while still maintaining security.

Also, in practice, the bits are generally delivered a few at a time
rather than all at once, so we don’t need to announce in advance
how many bits we want but can go back as needed to get more.
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Notation for PRSG’s

In a little more detail, a pseudorandom sequence generator G is a
function from a domain of seeds S to a domain of strings X .

We will generally assume that all of the seeds in S have the same
length n and that X is the set of all binary strings of length
` = `(n), where `(·) is a polynomial and n� `(n).

`(·) is called the expansion factor of G .
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What does it mean for a string to look random?

Intuitively, we want the strings G (s) to “look random”.
But what does it mean to “look random”?

Chaitin and Kolmogorov defined a string to be “random” if its
shortest description is almost as long as the string itself.

By this definition, most strings are random by a simple counting
argument.

For example, 011011011011011011011011011 is easily described as
the pattern 011 repeated 9 times. On the other hand,
101110100010100101001000001 has no obvious short description.

While philosophically very interesting, these notions are somewhat
different than the statistical notions that most people mean by
randomness and do not seem to be useful for cryptography.
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Randomness based on probability theory

We take a different tack.

We assume that the seeds are chosen uniformly at random from S.

Let S be a uniformly distributed random variable over S.

Then X ∈ X is a derived random variable defined by X = G (S).

For x ∈ X ,

Pr[X = x] =
|{s ∈ S | G(s) = x}|

|S|
.

Thus, Pr[X = x] is the probability of obtaining x as the output of
the PRSG for a randomly chosen seed.
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Randomness amplifier

We think of G (·) as a randomness amplifier.

We start with a short truly random seed and obtain a long string
that “looks like” a random string, even though we know it’s not
uniformly distributed.

In fact, the distribution G (S) is very much non-uniform.

Because |S| ≤ 2n, |X | = 2`, and n� `, most strings in X are not
in the range of G and hence have probability 0.

For the uniform distribution U over X , all strings have the same
non-zero probability 1/2`.

U is what we usually mean by a truly random variable on `-bit
strings.
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Computational indistinguishability

We have just seen that the probability distributions of X = G (S)
and U are quite different.

Nevertheless, it may be the case that all feasible probabilistic
algorithms behave essentially the same whether given a sample
chosen according to X or a sample chosen according to U.

If that is the case, we say that X and U are computationally
indistinguishable and that G is a cryptographically strong
pseudorandom sequence generator.
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Some implications of computational indistinguishability

Before going further, let me describe some functions G for which
G (S) is readily distinguished from U.

Suppose every string x = G (s) has the form b1b1b2b2b3b3 . . ., for
example 0011111100001100110000. . . .

Algorithm A(x) outputs “G” if x is of the special form above, and
it outputs “U”otherwise.

A will always output “G” for inputs from G (S). For inputs from U,
A will output “G” with probability only

2`/2

2`
=

1

2`/2
.

How many strings of length ` have the special form above?
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Judges
Formally, a judge is a probabilistic polynomial-time algorithm J
that takes an `-bit input string x and outputs a single bit b.

Thus, it defines a random function from X to {0, 1}.

This means that for every input x , the output is 1 with some
probability px , and the output is 0 with probability 1− px .

If the input string is a random variable X , then the probability that
the output is 1 is the weighted sum of px over all possible inputs x ,
where the weight is the probability Pr[X = x] of input x occurring.

Thus, the output value is itself a random variable J(X ), where

Pr[J(X) = 1] =
∑
x∈X

Pr[X = x] · px.

CPSC 467b, Lecture 18 14/41



Outline PRSG BBS Bit-prediction

Formal definition of indistinguishability

Two random variables X and Y are ε-indistinguishable by judge J if

|Pr[J(X) = 1]− Pr[J(Y) = 1]| < ε.

Intuitively, we say that G is cryptographically strong if G (S) and U
are ε-indistinguishable for suitably small ε by all judges that do not
run for too long.

A careful mathematical treatment of the concept of
indistinguishability must relate the length parameters n and `, the
error parameter ε, and the allowed running time of the judges

Further formal details may be found in Goldwasser and Bellare and
in handout 9.
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BBS Pseudorandom Sequence Generator
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A cryptographically strong PRSG

We present a cryptographically strong pseudorandom sequence
generator due to Blum, Blum, and Shub (BBS).

BBS is defined by a Blum integer n = pq and an integer `.

It maps strings in Z∗n to strings in {0, 1}`.

Given a seed s0 ∈ Z∗n, we define a sequence s1, s2, s3, . . . , s`, where
si = s2

i−1 mod n for i = 1, . . . , `.

The `-bit output sequence BBS(s0) is b1, b2, b3, . . . , b` , where
bi = lsb(si ) is the least significant bit of si .
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Security of BBS

In the next several slides, we show that BBS is secure.

The proof reduces the problem of predicting the output of BBS to
the quadratic residue problem.

We finally show that if there is a judge that successfully
distinguishes BBS(S) from U, then there is a feasible method for
distinguishing quadratic residues from non-residues with Jacobi
symbol 1.
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Recall QR assumption and Blum integers

The security of BBS is based on the assumed difficulty of
determining, for a given a ∈ Z∗n with Jacobi symbol 1, whether or
not a is a quadratic residue, i.e., whether or not a ∈ QRn.

Recall from Lecture 17 that a Blum prime is a prime p ≡ 3
(mod 4), and a Blum integer is a number n = pq, where p and q
are distinct Blum primes.

Also, Blum primes and Blum integers have the important property
that every quadratic residue a has exactly one square root y which
is itself a quadratic residue.

Call such a y the principal square root of a and denote it by
√

a
(mod n) or simply by

√
a when it is clear that mod n is intended.
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Blum integers and the Jacobi symbol

Fact
Let n be a Blum integer and a ∈ QRn. Then

(
a
n

)
=
(−a

n

)
= 1.

Proof.
This follows from the fact that if a is a quadratic residue modulo a
Blum prime, then −a is a quadratic non-residue. Hence,(

a

p

)
= −

(
−a

p

)
and

(
a

q

)
= −

(
−a

q

)
, so

(a

n

)
=

(
a

p

)
·
(

a

q

)
=

(
−
(
−a

p

))
·
(
−
(
−a

q

))
=

(
−a

n

)
.
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Blum integers and the least significant bit

The low-order bits of x mod n and (−x) mod n always differ when
n is odd.

Let lsb(x) = (x mod 2) be the least significant bit of integer x .

Fact
If n is odd, then lsb(x mod n)⊕ lsb((−x) mod n) = 1.
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First-bit prediction

A first-bit predictor with advantage ε is a probabilistic polynomial
time algorithm A that, given b2, . . . , b`, correctly predicts b1 with
probability at least 1/2 + ε.

This is not sufficient to establish that the pseudorandom sequence
BBS(S) is indistinguishable from the uniform random sequence U,
but if it did not hold, there certainly would exist a distinguishing
judge.

Namely, the judge that outputs 1 if b1 = A(b2, . . . , b`) and 0
otherwise would output 1 with probability greater than 1/2 + ε in
the case that the sequence came from BBS(S) and would output 1
with probability exactly 1/2 in the case that the sequence was truly
random.
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BBS has no first-bit predictor under the QR assumption

If BBS has a first-bit predictor A with advantage ε, then there is a
probabilistic polynomial time algorithm Q for testing quadratic
residuosity with the same accuracy.

Thus, if quadratic-residue-testing is “hard”, then so is first-bit
prediction for BBS.

Theorem
Let A be a first-bit predictor for BBS(S) with advantage ε. Then
we can find an algorithm Q for testing whether a number x with
Jacobi symbol 1 is a quadratic residue, and Q will be correct with
probability at least 1/2 + ε.
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Construction of Q

Assume that A predicts b1 given b2, . . . , b`.

Algorithm Q(x) tests whether or not a number x with Jacobi
symbol 1 is a quadratic residue modulo n.

It outputs 1 to mean x ∈ QRn and 0 to mean x 6∈ QRn.

To Q(x):
1. Let ŝ2 = x2 mod n.
2. Let ŝi = ŝ2

i−1 mod n, for i = 3, . . . , `.

3. Let b̂1 = lsb(x).

4. Let b̂i = lsb(ŝi ), for i = 2, . . . , `.

5. Let c = A(b̂2, . . . , b̂`).

6. If c = b̂1 then output 1; else output 0.
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Why Q works

Since
(

x
n

)
= 1, then either x or −x is a quadratic residue. Let s0

be the principal square root of x or −x . Let s1, . . . , s` be the state
sequence and b1, . . . , b` the corresponding output bits of BBS(s0).

We have two cases.

Case 1: x ∈ QRn. Then s1 = x , so the state sequence of BBS(s0)
is

s1, s2, . . . , s` = x , ŝ2, . . . , ŝ`,

and the corresponding output sequence is

b1, b2, . . . , b` = b̂1, b̂2, . . . , b̂`.

Since b̂1 = b1, Q(x) correctly outputs 1 whenever A correctly
predicts b1. This happens with probability at least 1/2 + ε.
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Why Q works (cont.)

Case 2: x ∈ QNRn, so −x ∈ QRn. Then s1 = −x , so the state
sequence of BBS(s0) is

s1, s2, . . . , s` = −x , ŝ2, . . . , ŝ`,

and the corresponding output sequence is

b1, b2, . . . , b` = ¬b̂1, b̂2, . . . , b̂`.

Since b̂1 = ¬b1, Q(x) correctly outputs 0 whenever A correctly
predicts b1. This happens with probability at least 1/2 + ε.
In both cases, Q(x) gives the correct output with probability at
least 1/2 + ε.
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Bit-Prediction
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Bit-prediction and statistical independence

One important property of the uniform distribution U on
bit-strings b1, . . . , b` is that the individual bits are statistically
independent from each other.

This means that the probability that a particular bit bi = 1 is
unaffected by the values of the other bits in the sequence.

Thus, any algorithm that attempts to predict bi , even knowing
other bits of the sequence, will be correct only 1/2 of the time.

We now translate this property of unpredictability to
pseudorandom sequences.
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Next-bit prediction

First-bit prediction seems rather uninteresting because
pseudorandom bits are usually generated in order.

However, we would like it to be difficult to predict the next bit
given the bits that came before.

Algorithm A is an ε-next-bit predictor for bit i if

Pr[A(b1, . . . ,bi−1) = bi] ≥
1
2

+ ε

where (b1, . . . , bi ) = Gi (S).

As before, S is uniformly distributed over S, G (S) is a random
variable over the output strings of G , and Gi (S) is the
corresponding random variable on the length-i prefixes of G (S).
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Next-bit prediction and indistinguishability

Next-bit prediction is closely related to indistinguishability.

Roughly speaking, G (S) has a next-bit predictor for some bit i iff
G (S) is distinguishable from U.

The precise definitions under which this theorem is true are subtle,
for one must quantify both the amount of time the judge and
next-bit predictor algorithms are permitted to run as well as how
much better than chance the judgments or predictions must be in
order to be considered a successful judge or next-bit predictor.

We defer the mathematics for now and focus instead on the
intuitive concepts that underlie this theorem.
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Building a judge from a next-bit predictor

Let A be an ε-next-bit predictor for G for some bit i .

Here’s how to build a judge J that distinguishes G (S) from U with
advantage ε.

I J, given a sample x drawn from either G (S) or from U, runs
A(x) to produce b̂i .

I If b̂i = bi , then J outputs 1.

I Otherwise, J outputs 0.
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The advantage of J

For samples from G (S), the judge will output 1 with the same
probability that A successfully predicts bit bi , which is at least
1/2 + ε.

For sequences drawn from U, the judge will output 1 with
probability exactly 1/2.

Hence, the judge distinguishes G (S) from U with advantage ε.

It follows that no cryptographically strong PRSG can have an
ε-next-bit predictor.

In other words, no algorithm that attempts to predict the next bit
can have more than a “small” advantage ε over chance.
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Previous-bit prediction
Previous-bit prediction, while perhaps less natural, is analogous to
next-bit prediction.

An ε-previous-bit predictor for bit i is a probabilistic polynomial
time algorithm A that, given bits bi+1, . . . , b`, correctly predicts bi

with probability at least 1/2 + ε.

As with next-bit predictors, if G (S) has a previous-bit predictor for
some bit bj , then some judge distinguishes G (S) from U.

Again, I am being vague with the exact conditions under which
this is true.

Hence, G (S) has an ε-next-bit predictor for some bit i if and only
if it has an ε′-previous-bit predictor for some bit j (where ε and ε′

are related but not necessarily equal).
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Special case of ` = 2

To give some intuition into why such a fact might be true, we look
at the special case of ` = 2, that is, of 2-bit sequences.

The probability distribution G (S) can be described by four
probabilities

pu,v = Pr[b1 = u ∧ b2 = v], where u, v ∈ {0, 1}.

Written in tabular form, we have

b2

b1

0 1

0 p0,0 p0,1

1 p1,0 p1,1
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Bit prediction when ` = 2

We describe a deterministic algorithm A(v) for predicting b1 given
b2 = v . A(v) predicts b1 = 0 if p0,v > p1,v , and it predicts b1 = 1
if p0,v ≤ p1,v .

In other words, the algorithm chooses the value for b1 that is most
likely given that b2 = v .

Theorem
If A is an ε-previous-bit predictor for b1, then A is an ε-next-bit
predictor for either b1 or b2.
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Proof that A is a next-bit predictor

Assume A is an ε-previous-bit predictor for b1, so A correctly
predicts b1 given b2 with probability ≥ 1/2 + ε.

We show that A is an ε-next-bit predictor for either b1 or b2.

Let a(v) be the value predicted by A(v) for v ∈ {0, 1}.

We have two cases:

Case 1: a(0) = a(1). Then algorithm A does not depend on v ,
that is, it makes the same prediction regardless of the value of v .

Thus, A(0) correctly predicts b1 with probability at least 1/2 + ε.
(This means that Pr[b1 = A(0)] ≥ 1/2 + ε.)

It follows that A is an ε-next-bit predictor for b1.
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Proof that A is a next-bit predictor (cont.)
Case 2: a(0) 6= a(1). The probability that A(v) correctly predicts
b1 given b2 = v is

Pr[b1 = a(v) | b2 = v] =
Pr[b1 = a(v) ∧ b2 = v]

Pr[b2 = v]
=

pa(v),v

Pr[b2 = v]

The overall probability that A(b2) is correct for b1 is the average of
the conditional probabilities for v = 0 and v = 1, weighted by the
probability that b2 = v . Thus,

Pr[A(b2) is correct for b1]

=
∑

v∈{0,1}

Pr[b1 = a(v) | b2 = v] · Pr[b2 = v]

=
∑

v∈{0,1}

pa(v),v = pa(0),0 + pa(1),1
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Proof that A is a next-bit predictor (cont.)
Similarly, using A to predict b2 given b1 yields

Pr[A(b1) is correct for b2]

=
∑

v∈{0,1}

Pr[b2 = a(u) | b1 = u] · Pr[b1 = u]

=
∑

v∈{0,1}

pu,a(u) = p0,a(0) + p1,a(1)

We show that

pa(0),0 + pa(1),1 = p0,a(0) + p1,a(1)

when a(0) 6= a(1). It follows that

Pr[A(b1) is correct for b2] = Pr[A(b2) is correct for b1],

so A is an ε-next-bit predictor for b2.
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Proof that A is a next-bit predictor (cont.)

Since a(0) 6= a(1), the function a(·) is one-to-one and onto, so
either a(v) = v for v ∈ {0, 1}, or a(v) = ¬v for v ∈ {0, 1}.

That is, a(·) is either the identity or the complement function.
Hence, either

pa(0),0 + pa(1),1 = p0,0 + p1,1 = p0,a(0) + p1,a(1)

or
pa(0),0 + pa(1),1 = p1,0 + p0,1 = p0,a(0) + p1,a(1)

as desired. Hence, A is an ε-next-bit predictor for b2.

Combining the two cases, we conclude that A is an ε-next-bit
predictor for either b1 or b2, proving the theorem.
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Summary of results
We have just seen how to construct a next-bit predictor from a
previous-bit predictor, and we’ve also seen how to construct a
judge from a next-bit predictor.

The most general bit-prediction problem is to predict the i th bit of
the sequence given all other bits. An algorithm that can do this
with advantage ε is said to be an ε-i th-bit predictor for G .

It’s easy to transform an ε-next-bit predictor for bi into an ε-i th-bit
predictor.

It’s also easy to build a judge with advantage ε from an ε-i th-bit
predictor.

To close the loop, one can build an ε′-next-bit predictor for some
bit i and some ε′ given a judge with advantage ε.
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Bit-prediction given a judge
We sketch how to build a next-bit predictor given a judge.
The construction is based on interpolation between U and G (S).

u1 u2 u3 . . . ui−1 ui ui+1 . . . u`

b1 u2 u3 . . . ui−1 ui ui+1 . . . u`

. . . . . .
b1 b2 b3 . . . bi−1 ui ui+1 . . . u`

b1 b2 b3 . . . bi−1 bi ui+1 . . . u`

. . . . . .
b1 b2 b3 . . . bi−1 bi bi+1 . . . b`

The difference in the judge’s output between top and bottom
sequence is ≥ ε.
Therefore, for some i , the difference in judge’s output between
sequence i − 1 and i must be at least ε′ = ε/`.

An ε′-next bit predictor for bi is easily constructed.
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