
Outline Kerberos SSH TLS DRM/TCP

CPSC 467b: Cryptography and Computer
Security

Michael J. Fischer

Lecture 24
April 16, 2012

CPSC 467b, Lecture 24 1/33



Outline Kerberos SSH TLS DRM/TCP

Kerberos

Secure Shell (SSH)

Transport Layer Security (TLS)

Digital Rights Management and Trusted Computing Platform

CPSC 467b, Lecture 24 2/33



Outline Kerberos SSH TLS DRM/TCP

Kerberos

CPSC 467b, Lecture 24 3/33



Outline Kerberos SSH TLS DRM/TCP

Kerberos

Kerberos is a widely-used authentication system and protocol
developed originally by M.I.T.’s Project Athena in the 1980’s.

The protocol was
named after the
character Kerberos
(or Cerberus) from
Greek mythology
which was a mon-
strous three-headed
guard dog of Hades.

http://collectionsonline.lacma.org/mwebcgi/mweb.exe?request=

record;id=12845;type=101

CPSC 467b, Lecture 24 4/33

http://collectionsonline.lacma.org/mwebcgi/mweb.exe?request=record;id=12845;type=101
http://collectionsonline.lacma.org/mwebcgi/mweb.exe?request=record;id=12845;type=101


Outline Kerberos SSH TLS DRM/TCP

Simple authentication protocol

Alice and Bob want to communicate privately.

If they already share a private key K , they can just send encrypted
messages to each other.

Problems with this approach:

1. Every time Alice uses K , she exposes it to possible
cryptanalysis, so she really only wants to use it to establish a
session key Kab to encrypt her message to Bob.

2. Alice needs a different key for each different user she might
wish to communicate with. In an N-party system, this could
require O(N2) keys and becomes unwieldy.

CPSC 467b, Lecture 24 5/33



Outline Kerberos SSH TLS DRM/TCP

Kerberos overview

Kerberos overcomes these problems by using a trusted server called
the Key Distribution Center (KDC).

Every user shares a key with the KDC.

When Alice wishes to talk to Bob, she asks the KDC to generate a
session key Kab for them to use.

The KDC uses Alice and Bob’s private keys Ka and Kb for
authentication and for the secure distribution of the session key
Kab to Alice and Bob.

CPSC 467b, Lecture 24 6/33



Outline Kerberos SSH TLS DRM/TCP

Problems to overcome

The protocol must overcome several problems to be useful in
practice:

I Network security is not assumed, so uses must never send
their private keys over the network.

I Once Alice obtains Kab, she needs a way of verifying that the
other party holding Kab is really Bob and not someone else
pretending to be Bob.

I Users do not want to be constantly asked to provide their
passwords, so a single sign-on (SSO) system is desirable.

I In a large system, the KDC could become a bottleneck, so it
needs to be scalable.

CPSC 467b, Lecture 24 7/33



Outline Kerberos SSH TLS DRM/TCP

Parties to the protocol

Four parties are involved in the basic protocol:

I The authentication server (AS);

I The ticket granting server (TGS);

I The client, Alice in our examples;

I The service server (SS), Bob in our examples.

The KDC contains the database of all keys and generally runs both
the AS and the TGS.

CPSC 467b, Lecture 24 8/33



Outline Kerberos SSH TLS DRM/TCP

Basic protocol

At a high level, the basic protocol consists of three phases:

1. Alice authenticates herself to the AS and receives a ticket
granting ticket (TGT) in return.

2. Alice presents a TGT to the TGS to obtain an Alice-to-Bob
ticket.

3. Alice presents the Alice-to-Bob ticket to Bob in order to
obtain service.

Alice only uses her private key in step 1. The TGT obtained in
step 1 contains a client/TGS session key that is used for securely
communicating with the TGS in step 2.

CPSC 467b, Lecture 24 9/33



Outline Kerberos SSH TLS DRM/TCP

Phase 1: Obtaining a TGT

Alice authenticates herself to AS and obtains a TGT.

I Alice sends a cleartext message with her ID “a” to the AS.
I The AS obtains Alice’s secret key Ka from the database and

sends back two messages:

1. Message A: A Client/TGS session key Ka,TGS, encrypted with
Ka.

2. Message B: A TGT (Alice’s ID, her IP address, expiration
time, Ka,TGS), encrypted with KTGS.

I Alice decrypts message A to obtain Ka,TGS. She is unable to
decrypt message B.

CPSC 467b, Lecture 24 10/33



Outline Kerberos SSH TLS DRM/TCP

Phase 2: Obtaining an A-to-B ticket

Alice uses her TGT to obtain an Alice-to-Bob ticket (A-to-B).
I Alice sends two messages to the TGS:

1. Message C: (Message B, Bob’s ID).
2. Message D: (Alice’s ID, timestamp), encrypted with Ka,TGS.

I The TGS retrieves message B from message C and decrypts it
to get Ka,TGS, which it then uses to decrypt message D. It
checks Alice’s ID and IP address, generates a session key Kab

and then sends two messages to Alice:

1. Message E: A-to-B ticket = (Alice’s ID, her IP address,
expiration time, Ka,b), encrypted using Kb.

2. Message F: Ka,b, encrypted using Ka,TGS.

CPSC 467b, Lecture 24 11/33



Outline Kerberos SSH TLS DRM/TCP

Phase 3: Authenticating herself to Bob

Alice uses her A-to-B ticket to authorize herself to Bob.
I Alice sends two messages to Bob:

1. Her A-to-B ticket, which she received from TGS as Message E.
2. Message G: An authenticator = (Alice ID, timestamp),

encrypted with Ka,b.

I Bob decrypts the ticket to retrieve Ka,b, which he uses it to
decrypt the authenticator. He sends the following message to
Alice:

1. Message H: (1 + timestamp from the authenticator),
encrypted with Ka,b.

I Alice decrypts and checks message H for correctness.

CPSC 467b, Lecture 24 12/33



Outline Kerberos SSH TLS DRM/TCP

Use in practice

Tickets have a relatively long lifetime and can be used many times.

Authenticators have a relatively short lifetime and can be used only
once.

The latest protocol has additional security enhancements beyond
those described here.

CPSC 467b, Lecture 24 13/33



Outline Kerberos SSH TLS DRM/TCP

Advantages of Kerberos

I Passwords arent exposed to eavesdropping.
I Password is only typed to the local workstation.

I It never travels over the network.
I It is never transmitted to a remote server.

I Password guessing is more difficult.
I Single sign-on.

I More convenient: only one password, entered once.
I Users may be less likely to store passwords.

I Stolen tickets hard to reuse.
I Need authenticator as well, which cant be reused.

I Much easier to effectively secure a small set of limited access
machines (the KDC).

I Easier to recover from host compromises.

I Centralized user account administration.

CPSC 467b, Lecture 24 14/33



Outline Kerberos SSH TLS DRM/TCP

Drawbacks and Limitations

I Kerberos server can impersonate anyone.
I KDC is a single point of failure.

I Can have replicated KDCs.
I KDC could be a performance bottleneck.

I Everyone needs to communicate with it frequently.
I Not a practical concern these days.
I Having multiple KDCs alleviates the problem.

I If local workstation is compromised, users password could be
stolen.

I Only use a desktop machine or laptop that you trust.
I Use hardware token pre-authentication.

I Kerberos vulnerable to password guessing attacks.
I Choose good passwords!
I Use hardware pre-authentication.

I Hardware tokens, Smart cards etc.

CPSC 467b, Lecture 24 15/33



Outline Kerberos SSH TLS DRM/TCP

Secure Shell (SSH)

CPSC 467b, Lecture 24 16/33



Outline Kerberos SSH TLS DRM/TCP

Secure Shell (SSH)

SSH is a family of protocols that provide a secure encrypted
channel connecting two networked computers over an insecure
network.

It was initially designed to allow secure login between a user and a
remote computer. This replaced the older telnet, rlogin, and
rsh programs that provided unencrypted versions of this service
and sent unencrypted passwords over the network.

The first version was designed by Tatu Ylönen at Helsinki
University of Technology, Finland, and released as freeware in July
1995.

CPSC 467b, Lecture 24 17/33



Outline Kerberos SSH TLS DRM/TCP

Open source and version forking
By December 1995, Ylönen created a startup company to market
and develop SSH. The original version remained free, but many
enhancements were only available in the commercial version.

Over the next five years, the licensing agreement became more and
more restrictive as they worked to remove open source code (such
as libgmp) from their code base.

Several vulnerabilities in SSH-1.5 were discovered, giving further
motivation to create an open source version of SSH that could be
more easily vetted for bugs and distributed more widely.

Starting from Ylönen’s SSH-1.2.12, the last version released under
an open source license, Björn Grönvall developed OSSH. OpenBSD
developers then forked Grönvall’s code and did further
development to create the widely used OpenSSH.

CPSC 467b, Lecture 24 18/33



Outline Kerberos SSH TLS DRM/TCP

SSH-2

By 2006, an improved but incompatible version 2 of the SSH
protocol was adopted as a standard by the Internet Engineering
Task Force (IETF).

Development of OpenSSH continues to this day, allowing more and
more applications derive the benefits of secure encrypted
communications.

CPSC 467b, Lecture 24 19/33



Outline Kerberos SSH TLS DRM/TCP

SSH protocol outline

SSH is based on public key cryptography. Each machine has a
public and private host key. Each user also has a public and
private user key.

When logging onto a remote machine, the client first authenticates
the remote host key using the public key for the host with that
domain name or IP address found in the local known hosts file.

CPSC 467b, Lecture 24 20/33



Outline Kerberos SSH TLS DRM/TCP

Host key verification

If the host is not in the file or cannot authenticate the public key
found there, one gets a prompt

The authenticity of host ’vm1.cs.yale.edu (128.36.229.150)’ can’t be established.

RSA key fingerprint is c9:a5:be:55:af:ab:05:77:b4:30:62:ed:bd:be:50:43.

Are you sure you want to continue connecting (yes/no)?

If you say yes, the public key of that host gets entered into the
known hosts file and used the next time.

CPSC 467b, Lecture 24 21/33



Outline Kerberos SSH TLS DRM/TCP

User authentication

SSH supports several authentication methods. I’ll describe the
publickey method.

Here, the host checks that the user’s public key is in its
authorized users file. If it is, it verifies that the user has the
matching private key and accepts the authentication if it does.

CPSC 467b, Lecture 24 22/33



Outline Kerberos SSH TLS DRM/TCP

Actual protocol

The actual protocol is much more complicated than this.

It include negotiations for which cipher to use, how to generate the
shared session, what an encrypted packet looks like, and so forth.

CPSC 467b, Lecture 24 23/33



Outline Kerberos SSH TLS DRM/TCP

Transport Layer Security (TLS)

CPSC 467b, Lecture 24 24/33



Outline Kerberos SSH TLS DRM/TCP

TLS protocol

Transport Layer Security (TLS) is a protocol to secure and encrypt
network traffic at the transport layer.

Like SSH, it provides authentication and encryption.

It is used to implement secure web traffic (https:) but applies
much more generally.

CPSC 467b, Lecture 24 25/33



Outline Kerberos SSH TLS DRM/TCP

ISO/OSI Model SSL: Security at Transport Layer

Application LayerApplication Layer

Presentation LayerPresentation Layer

Session LayerSession Layer

Transport LayerTransport Layer

Network LayerNetwork Layer

Data Link LayerData Link Layer

Physical LayerPhysical Layer

Application LayerApplication Layer

Presentation LayerPresentation Layer

Session LayerSession Layer

Transport LayerTransport Layer

Network LayerNetwork Layer

Data Link LayerData Link Layer

Physical LayerPhysical Layer

Network LayerNetwork Layer

Data Link LayerData Link Layer

Physical LayerPhysical Layer

Peer-to-peer

Flow of bits

CPSC 467b, Lecture 24 26/33



Outline Kerberos SSH TLS DRM/TCP

History

The TLS protocol has gone through several versions. It was
originally called Secure Socket Layer (SSL).

TLS 1.0 was first defined in 1999. It did not interoperate with the
existing SSL 3.0 and so was renamed.

CPSC 467b, Lecture 24 27/33



Outline Kerberos SSH TLS DRM/TCP

Key management

TLS uses X.509 certificates for its key management as described in
lecture 16.

They allow the client to authenticate the server as follows:

1. The client obtains the server’s certificate, generally from the
server itself.

2. The client checks the validity of the certificate by verifying
that it is properly signed by a trusted certificate authority.

3. The client then runs a simple authentication protocol whereby
the server shows that it has the private key corresponding to
its certificate.

4. Finally, client and server establish a shared symmetric key and
use it to encrypt traffic between themselves.

CPSC 467b, Lecture 24 28/33

http://zoo.cs.yale.edu/classes/cs467/2012s/lectures/ln16.pdf


Outline Kerberos SSH TLS DRM/TCP

The actual protocol

The actual protocol has all of the complications of the other
practical protocols we’ve mentioned.

I It begins with a handshaking phase where client and server
agree on the protocol level, cipher suite, and other parameters.

I Generally the server is authenticated by the client.
I The protocol allows for the server to require client

authentication. However, this is not usually done for two
reasons:

1. Most clients lack certificates.
2. Most servers use other means such as passwords to

authenticate clients. This occurs after the encrypted
connection has been established, so the passwords are not sent
in the clear.

CPSC 467b, Lecture 24 29/33



Outline Kerberos SSH TLS DRM/TCP

Preventing man-in-the-middle attacks

TLS is secure against man-in-the-middle attacks, even with only
one-way authentication.

This is possible because the certificate give the client a reliable
means of obtaining its public key.

At the end of the handshaking protocol, after the session key has
been established, the client sends the server the hash of the
complete transcript between client and server as seen by the client,
secured with the server’s public key.

The server checks that hash value against the hash of its view of
the same handshake. If they don’t agree, it indicates the presence
of a man-in-the-middle or other network error and the protocol
does not continue.

CPSC 467b, Lecture 24 30/33



Outline Kerberos SSH TLS DRM/TCP

Digital Rights Management and Trusted

Computing Platform

CPSC 467b, Lecture 24 31/33



Outline Kerberos SSH TLS DRM/TCP

Control of information

Another attempted use of cryptography has been to control the
use of information.

Digital Rights Management (DRM) is the term for a class of
encryption schemes to disallow certain kinds of use of data, for
example, copying and modifying.

Trusted Computing Platform (TCP) is a hardware architecture
that requires authorization tokens to perform certain operations.
These tokens are cryptographically produced using keys that are
securely stored inside of a special crypto module.

CPSC 467b, Lecture 24 32/33



Outline Kerberos SSH TLS DRM/TCP

A different paradigm

In most uses of cryptography studied so far, the owner of the
secret keys also possesses and protects them.

With DRM and TCP, the party controlling the keys is not the
same as the owner of the machine that uses them.

This means that the keys must be hidden from the owner of the
device on which they are used.

While it is easy to prevent casual users from looking inside their
box, protecting embedded secrets against sophisticated attacks has
proved to be very difficult, and many DRM schemes have been
broken soon after being introduced.

CPSC 467b, Lecture 24 33/33


	Outline
	Kerberos
	Secure Shell (SSH)
	Transport Layer Security (TLS)
	Digital Rights Management and Trusted Computing Platform

