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Quadratic Residues, Squares, and Square

Roots
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Square roots in Z∗n

Recall from lecture 13 that to find points on an elliptic curve
requires solving the equation

y2 = x3 + ax + b

for y (mod p), and that requires computing square roots in Z∗p.

Squares and square roots have several other cryptographic
applications as well.

Today, we take a brief tour of the theory of quadratic resides.
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Quadratic residues modulo n

An integer b is a square root of a modulo n if

b2 ≡ a (mod n).

An integer a is a quadratic residue (or perfect square) modulo n if
it has a square root modulo n.
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Quadratic residues in Z∗n
If a, b ∈ Zn and b2 ≡ a (mod n), then

b ∈ Z∗n iff a ∈ Z∗n.

Why? Because

gcd(b, n) = 1 iff gcd(a, n) = 1

This follows from the fact that b2 = a + un for some u, so if p is a
prime divisor of n, then

p |b iff p |a.

Assume that all quadratic residues and square roots are in Z∗n
unless stated otherwise.
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QRn and QNRn

We partition Z∗n into two parts.

QRn = {a ∈ Z∗n | a is a quadratic residue modulo n}.
QNRn = Z∗n −QRn.

QRn is the set of quadratic residues modulo n.

QNRn is the set of quadratic non-residues modulo n.

For a ∈ QRn, we sometimes write

√
a = {b ∈ Z∗n | b2 ≡ a (mod n)},

the set of square roots of a modulo n.
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Quadratic residues in Z∗15

The following table shows all elements of
Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14} and their squares.

b b2 mod 15

1 1
2 4
4 1
7 4

8 = −7 4
11 = −4 1
13 = −2 4
14 = −1 1

Thus, QR15 = {1, 4} and QNR15 = {2, 7, 8, 11, 13, 14}.
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Sqrt mod p

Quadratic residues modulo an odd prime p

Fact
For an odd prime p,

I Every a ∈ QRp has exactly two square roots in Z∗p;

I Exactly 1/2 of the elements of Z∗p are quadratic residues.

In other words, if a ∈ QRp,

|
√

a| = 2.

|QRn| = |Z∗p|/2 =
p − 1

2
.
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Sqrt mod p

Quadratic residues in Z∗11

The following table shows all elements b ∈ Z∗11 and their squares.

b b2 mod 11

1 1
2 4
3 9
4 5
5 3

b −b b2 mod 11

6 −5 3
7 −4 5
8 −3 9
9 −2 4

10 −1 1

Thus, QR11 = {1, 3, 4, 5, 9} and QNR11 = {2, 6, 7, 8, 10}.
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Sqrt mod p

Proof that |
√

a| = 2 modulo an odd prime p

Let a ∈ QRp.

I It must have a square root b ∈ Z∗p.

I (−b)2 ≡ b2 ≡ a (mod p), so −b ∈
√

a.

I Moreover, b 6≡ −b (mod p) since p ∼| 2b, so |
√

a| ≥ 2.

I Now suppose c ∈
√

a. Then c2 ≡ a ≡ b2 (mod p).

I Hence, p |c2 − b2 = (c − b)(c + b).

I Since p is prime, then either p |(c − b) or p |(c + b) (or both).

I If p |(c − b), then c ≡ b (mod p).

I If p |(c + b), then c ≡ −b (mod p).

I Hence, c = ±b, so
√

a = {b,−b}, and |
√

a| = 2.
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Sqrt mod p

Proof that half the elements of Z∗p are in QRp

I Each b ∈ Z∗p is the square root of exactly one element of QRp.

I The mapping b 7→ b2 mod p is a 2-to-1 mapping from Z∗p to
QRp.

I Therefore, |QRp| = 1
2 |Z
∗
p| as desired.

CPSC 467b, Lecture 14 12/54



Outline Quadratic Residues Finding sqrt QR crypto Legendre/Jacobi Useful tests

Sqrt mod pq

Quadratic residues modulo pq
We now turn to the case where n = pq is the product of two
distinct odd primes.

Fact
Let n = pq for p, q distinct odd primes.

I Every a ∈ QRn has exactly four square roots in Z∗n;

I Exactly 1/4 of the elements of Z∗n are quadratic residues.

In other words, if a ∈ QRn,

|
√

a| = 4.

|QRn| = |Z∗n|/4 =
(p − 1)(q − 1)

4
.
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Sqrt mod pq

Proof sketch

I Let a ∈ QRn. Then a ∈ QRp and a ∈ QRq.
I There are numbers bp ∈ QRp and bq ∈ QRq such that

I
√

a (mod p) = {±bp}, and
I
√

a (mod q) = {±bq}.
I Each pair (x , y) with x ∈ {±bp} and y ∈ {±bq} can be

combined to yield a distinct element bx ,y in
√

a (mod n).1

I Hence, |
√

a (mod n)| = 4, and |QRn| = |Z∗n|/4.

1To find bx,y from x and y requires use of the Chinese Remainder theorem.
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Euler Criterion

Testing for membership in QRp

Theorem (Euler Criterion)

An integer a is a non-trivial2 quadratic residue modulo an odd
prime p iff

a(p−1)/2 ≡ 1 (mod p).

Proof in forward direction.
Let a ≡ b2 (mod p) for some b 6≡ 0 (mod p). Then

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 (mod p)

by Euler’s theorem, as desired.

2A non-trivial quadratic residue is one that is not equivalent to 0 (mod p).
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Euler Criterion

Proof of Euler Criterion

Proof in reverse direction.
Suppose a(p−1)/2 ≡ 1 (mod p). Clearly a 6≡ 0 (mod p). We find a
square root b of a modulo p.

Let g be a primitive root of p. Choose k so that a ≡ gk (mod p),
and let ` = (p − 1)k/2. Then

g ` ≡ g (p−1)k/2 ≡ (gk)(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p).

Since g is a primitive root, (p − 1) |`. Hence, 2|k and k/2 is an
integer.

Let b = gk/2. Then b2 ≡ gk ≡ a (mod p), so b is a non-trivial
square root of a modulo p, as desired.
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Finding Square Roots
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Special primes

Finding square roots modulo prime p ≡ 3 (mod 4)

The Euler criterion lets us test membership in QRp for prime p,
but it doesn’t tell us how to quickly find square roots. They are
easily found in the special case when p ≡ 3 (mod 4).

Theorem
Let p ≡ 3 (mod 4), a ∈ QRp. Then b = a(p+1)/4 ∈

√
a (mod p).

Proof.
p + 1 is divisible by 4, so (p + 1)/4 is an integer. Then

b2 ≡ (a(p+1)/4)2 ≡ a(p+1)/2 ≡ a1+(p−1)/2 ≡ a · 1 ≡ a (mod p)

by the Euler Criterion.
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General primes

Finding square roots for general primes

We now present an algorithm due to D. Shanks3 that finds square
roots of quadratic residues modulo any odd prime p.

It bears a strong resemblance to the algorithm presented in
lecture 9 for factoring the RSA modulus given both the encryption
and decryption exponents.

3Shanks’s algorithm appeared in his paper, “Five number-theoretic
algorithms”, in Proceedings of the Second Manitoba Conference on Numerical
Mathematics, Congressus Numerantium, No. VII, 1973, 51–70. Our treatment
is taken from the paper by Jan-Christoph Schlage-Puchta”, “On Shank’s
Algorithm for Modular Square Roots”, Applied Mathematics E-Notes, 5
(2005), 84–88.
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General primes

Shank’s algorithm

Let p be an odd prime. Write φ(p) = p − 1 = 2st, where t is odd.
(Recall: s is # trailing 0’s in the binary expansion of p − 1.)

Because p is odd, p − 1 is even, so s ≥ 1.
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General primes

A special case

In the special case when s = 1, then p − 1 = 2t, so p = 2t + 1.

Writing the odd number t as 2`+ 1 for some integer `, we have

p = 2(2`+ 1) + 1 = 4`+ 3,

so p ≡ 3 (mod 4).

This is exactly the case that we handled above.
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General primes

Overall structure of Shank’s algorithm

Let p − 1 = 2st be as above, where p is an odd prime.

Assume a ∈ QRp is a quadratic residue and u ∈ QNRp is a
quadratic non-residue.

We can easily find u by choosing random elements of Z∗p and
applying the Euler Criterion.

The goal is to find x such that x2 ≡ a (mod p).
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General primes

Shanks’s algorithm

1. Let s, t satisfy p − 1 = 2st and t odd.
2. Let u ∈ QNRp.
3. k = s
4. z = ut mod p
5. x = a(t+1)/2 mod p
6. b = at mod p
7. while (b 6≡ 1 (mod p)) {
8. let m be the least integer with b2m ≡ 1 (mod p)

9. y = z2k−m−1

mod p
10. z = y2 mod p
11. b = bz mod p
12. x = xy mod p
13. k = m
14. }
15. return x
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General primes

Loop invariant

The congruence
x2 ≡ ab (mod p)

is easily shown to be a loop invariant.

It’s clearly true initially since x2 ≡ at+1 and b ≡ at (mod p).

Each time through the loop, a is unchanged, b gets multiplied by
y2 (lines 10 and 11), and x gets multiplied by y (line 12); hence
the invariant remains true regardless of the value of y .

If the program terminates, we have b ≡ 1 (mod p), so x2 ≡ a, and
x is a square root of a (mod p).
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General primes

Termination proof (sketch)

The algorithm terminates after at most s − 1 iterations of the loop.

To see why, we look at the orders4 of b and z (mod p) and show
the following loop invariant:

At the start of each loop iteration (before line 8), ord(b)
is a power of 2 and ord(b) < ord(z) = 2k .

After line 8, m < k since 2m = ord(b) < 2k . Line 13 sets k = m
for the next iteration, so k decreases on each iteration.

The loop terminates when b ≡ 1 (mod p). Then ord(b) = 1 < 2k ,
so k ≥ 1. Hence, the loop is executed at most s − 1 times.

4Recall that the order of an element g modulo p is the least positive integer
k such that g k ≡ 1 (mod p).
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QR Probabilistic Cryptosystem
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A hard problem associated with quadratic residues

Let n = pq, where p and q are distinct odd primes.

Recall that each a ∈ QRn has 4 square roots, and 1/4 of the
elements in Z∗n are quadratic residues.

Some elements of Z∗n are easily recognized as non-residues, but
there is a subset of non-residues (which we denote as Q00

n ) that are
hard to distinguish from quadratic residues without knowing p
and q.

This allows for public key encryption of single bits: A random
element of QRn encrypts 1; a random element of Q00

n encrypts 0.
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Quadratic residues modulo n = pq
Let n = pq, p, q distinct odd primes.

We divide the numbers in Z∗n into four classes depending on their
membership in QRp and QRq.5

I Let Q11
n = {a ∈ Z∗n | a ∈ QRp ∩QRq}.

I Let Q10
n = {a ∈ Z∗n | a ∈ QRp ∩QNRq}.

I Let Q01
n = {a ∈ Z∗n | a ∈ QNRp ∩QRq}.

I Let Q00
n = {a ∈ Z∗n | a ∈ QNRp ∩QNRq}.

Under these definitions, QRn = Q11
n

QNRn = Q00
n ∪ Q01

n ∪ Q10
n

5To be strictly formal, we classify a ∈ Z∗n according to whether or not
(a mod p) ∈ QRp and whether or not (a mod q) ∈ QRq.
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Quadratic residuosity problem

Definition (Quadratic residuosity problem)

The quadratic residuosity problem is to decide, given
a ∈ Q00

n ∪ Q11
n , whether or not a ∈ Q11

n .

Fact
There is no known feasible algorithm for solving the quadratic
residuosity problem that gives the correct answer significantly more
than 1/2 the time for uniformly distributed random a ∈ Q00

n ∪Q11
n ,

unless the factorization of n is known.
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Goldwasser-Micali probabilistic cryptosystem

The Goldwasser-Micali cryptosystem is based on the assumed
hardness of the quadratic residuosity problem.

The public key consist of a pair e = (n, y), where n = pq for
distinct odd primes p, q, and y is any member of Q00

n .
The private key consists of p.
The message space is M = {0, 1}. (Single bits!)

To encrypt m ∈M, Alice chooses a random a ∈ QRn.
She does this by choosing a random member of Z∗n and squaring it.

If m = 0, then c = a mod n ∈ Q11
n .

If m = 1, then c = ay mod n ∈ Q00
n .

The problem of finding m given c is equivalent to the problem of
testing if c ∈ QRn(= Q11

n ), given that c ∈ Q00
n ∪ Q11

n .
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Decryption in Goldwasser-Micali encryption

Bob, knowing the private key p, can use the Euler Criterion to
quickly determine whether or not c ∈ QRp and hence whether
c ∈ Q11

n or c ∈ Q00
n , thereby determining m.

Eve’s problem of determining whether c encrypts 0 or 1 is the
same as the problem of distinguishing between membership in Q00

n

and Q11
n , which is just the quadratic residuosity problem, assuming

the ciphertexts are uniformly distributed.

One can show that every element of Q11
n is equally likely to be

chosen as the ciphertext c in case m = 0, and every element of
Q00

n is equally likely to be chosen as the ciphertext c in case
m = 1. If the messages are also uniformly distributed, then any
element of Q00

n ∪ Q11
n is equally likely to be the ciphertext.
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Summary

Important facts about quadratic residues

1. If p is odd prime, then |QRp| = |Z∗p|/2, and for each
a ∈ QRp, |

√
a| = 2.

2. If n = pq, p 6= q odd primes, then |QRn| = |Z∗n|/4, and for
each a ∈ QRn, |

√
a| = 4.

3. Euler criterion: a ∈ QRp iff a(p−1)/2 ≡ 1 (mod p), p odd
prime.

4. If n is odd prime, a ∈ QRn, can feasibly find y ∈
√

a.

5. If n = pq, p 6= q odd primes, then distinguishing Q00
n from

Q11
n is believed to be infeasible. Hence, infeasible to find

y ∈
√

a. Why?
If not, one could attempt to find y ∈

√
a, check that y2 ≡ a

(mod n), and conclude that a ∈ Q11 if successful.
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The Legendre and Jacobi Symbols
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Legendre

Legendre symbol
Let p be an odd prime, a an integer. The Legendre symbol

(
a
p

)
is

a number in {−1, 0,+1}, defined as follows:(
a

p

)
=


+1 if a is a non-trivial quadratic residue modulo p

0 if a ≡ 0 (mod p)
−1 if a is not a quadratic residue modulo p

By the Euler Criterion, we have

Theorem
Let p be an odd prime. Then(

a

p

)
≡ a( p−1

2 ) (mod p)

Note that this theorem holds even when p |a.
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Legendre

Properties of the Legendre symbol

The Legendre symbol satisfies the following multiplicative property:

Fact
Let p be an odd prime. Then(

a1a2

p

)
=

(
a1

p

) (
a2

p

)

Not surprisingly, if a1 and a2 are both non-trivial quadratic
residues, then so is a1a2. Hence, the fact holds when(

a1

p

)
=

(
a2

p

)
= 1.
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Legendre

Product of two non-residues

Suppose a1 6∈ QRp, a2 6∈ QRp. The above fact asserts that the
product a1a2 is a quadratic residue since(

a1a2

p

)
=

(
a1

p

) (
a2

p

)
= (−1)(−1) = 1.

Here’s why.

I Let g be a primitive root of p.

I Write a1 ≡ gk1 (mod p) and a2 ≡ gk2 (mod p).

I Both k1 and k2 are odd since a1, a2 6∈ QRp.

I But then k1 + k2 is even.

I Hence, g (k1+k2)/2 is a square root of a1a2 ≡ gk1+k2 (mod p),
so a1a2 is a quadratic residue.
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Jacobi

The Jacobi symbol
The Jacobi symbol extends the Legendre symbol to the case where
the “denominator” is an arbitrary odd positive number n.

Let n be an odd positive integer with prime factorization
∏k

i=1 pi
ei .

We define the Jacobi symbol by(a

n

)
=

k∏
i=1

(
a

pi

) ei

(1)

The symbol on the left is the Jacobi symbol, and the symbol on
the right is the Legendre symbol.

(By convention, this product is 1 when k = 0, so
(

a
1

)
= 1.)

The Jacobi symbol extends the Legendre symbol since the two
definitions coincide when n is an odd prime.
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Jacobi

Meaning of Jacobi symbol

What does the Jacobi symbol mean when n is not prime?

I If
(

a
n

)
= +1, a might or might not be a quadratic residue.

I If
(

a
n

)
= 0, then gcd(a, n) 6= 1.

I If
(

a
n

)
= −1 then a is definitely not a quadratic residue.
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Jacobi

Jacobi symbol = +1 for n = pq

Let n = pq for p, q distinct odd primes. Since(a

n

)
=

(
a

p

) (
a

q

)
(2)

there are two cases that result in
(

a
n

)
= 1:

1.
(

a
p

)
=
(

a
q

)
= +1, or

2.
(

a
p

)
=
(

a
q

)
= −1.
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Jacobi

Case of both Jacobi symbols = +1

If
(

a
p

)
=
(

a
q

)
= +1, then a ∈ QRp ∩QRq = Q11

n .

It follows by the Chinese Remainder Theorem that a ∈ QRn.

This fact was implicitly used in the proof sketch that |
√

a| = 4.
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Jacobi

Case of both Jacobi symbols = −1

If
(

a
p

)
=
(

a
q

)
= −1, then a ∈ QNRp ∩QNRq = Q00

n .

In this case, a is not a quadratic residue modulo n.

Such numbers a are sometimes called “pseudo-squares” since they
have Jacobi symbol 1 but are not quadratic residues.
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Identities

Computing the Jacobi symbol

The Jacobi symbol
(

a
n

)
is easily computed from its definition

(equation 1) and the Euler Criterion, given the factorization of n.

Similarly, gcd(u, v) is easily computed without resort to the
Euclidean algorithm given the factorizations of u and v .

The remarkable fact about the Euclidean algorithm is that it lets
us compute gcd(u, v) efficiently, without knowing the factors of u
and v .

A similar algorithm allows us to compute the Jacobi symbol
(

a
n

)
efficiently, without knowing the factorization of a or n.
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Identities

Identities involving the Jacobi symbol

The algorithm is based on identities satisfied by the Jacobi symbol:

1.
(

0
n

)
=

{
1 if n = 1
0 if n 6= 1;

2.
(

2
n

)
=

{
1 if n ≡ ±1 (mod 8)
−1 if n ≡ ±3 (mod 8);

3.
(

a1
n

)
=
(

a2
n

)
if a1 ≡ a2 (mod n);

4.
(

2a
n

)
=
(

2
n

)
·
(

a
n

)
;

5.
(

a
n

)
=

{ (
n
a

)
if a, n odd and ¬(a ≡ n ≡ 3 (mod 4))

−
(

n
a

)
if a, n odd and a ≡ n ≡ 3 (mod 4).
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Identities

A recursive algorithm for computing Jacobi symbol

/* Precondition: a, n >= 0; n is odd */
int jacobi(int a, int n) {
if (a == 0) /* identity 1 */
return (n==1) ? 1 : 0;

if (a == 2) /* identity 2 */
switch (n%8) {
case 1: case 7: return 1;
case 3: case 5: return -1;
}

if ( a >= n ) /* identity 3 */
return jacobi(a%n, n);

if (a%2 == 0) /* identity 4 */
return jacobi(2,n)*jacobi(a/2, n);

/* a is odd */ /* identity 5 */
return (a%4 == 3 && n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);

}
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Useful Tests of Compositeness
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Solovay-Strassen

Solovay-Strassen compositeness test

Recall that a test of compositeness for n is a set of predicates
{τa(n)}a∈Z∗n such that if τ(n) succeeds (is true), then n is
composite.

The Solovay-Strassen Test is the set of predicates {νa(n)}a∈Z∗n ,
where

νa(n) = true iff
(a

n

)
6≡ a(n−1)/2 (mod n).

If n is prime, the test always fails by the Euler Criterion.
Equivalently, if some νa(n) succeeds for some a, then n must be
composite.

Hence, the test is a valid test of compositeness.
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Usefulness of Strassen-Solovay test

Let b = a(n−1)/2. The Strassen-Solovay test succeeds if
(

a
n

)
6≡ b

(mod n). There are two ways they could fail to be equal:

1. b2 ≡ an−1 6≡ 1 (mod n).
In this case, b 6≡ ±1 (mod n). This is just the Fermat test
ζa(n) from lecture 9.

2. b2 ≡ an−1 ≡ 1 (mod n) but b 6≡
(

a
n

)
(mod n).

In this case, b ∈
√

1 (mod n), but b might have the opposite
sign from

(
a
n

)
, or it might not even be ±1 since 1 has

additional square roots when n is composite.
Strassen and Solovay show the probability that νa(n) succeeds for
a randomly-chosen a ∈ Z∗n is at least 1/2 when n is composite.6

Hence, the Strassen-Solovay test is a useful test of compositeness.
6R. Solovay and V. Strassen, “A Fast Monte-Carlo Test for Primality”,

SIAM J. Comput. 6:1 (1977), 84–85.
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Miller-Rabin test – an overview

The Miller-Rabin Test is more complicated to describe than the
Solovay-Strassen Test, but the probability of error (that is, the
probability that it fails when n is composite) seems to be lower.

Hence, the same degree of confidence can be achieved using fewer
iterations of the test. This makes it faster when incorporated into
a primality-testing algorithm.

This test is closely related to the algorithm from Lecture 9 for
factoring an RSA modulus given the encryption and decryption
keys and to Shanks Algorithm given in this lecture for computing
square roots modulo an odd prime.
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Miller-Rabin test

The Miller-Rabin test µa(n) computes a sequence b0, b1, . . . , bs in
Z∗n. The test succeeds if bs 6≡ 1 (mod n) or the last non-1 element
exists and is 6≡ −1 (mod n).

The sequence is computed as follows:

1. Write n − 1 = 2st, where t is an odd positive integer.

2. Let b0 = at mod n.

3. For i = 1, 2, . . . , s, let bi = (bi−1)2 mod n.

An easy inductive proof shows that bi = a2i t mod n for all i ,
0 ≤ i ≤ s. In particular, bs ≡ a2s t = an−1 (mod n).
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Validity of the Miller-Rabin test

The Miller-Rabin test fails when either every bk ≡ 1 (mod n) or
for some k , bk−1 ≡ −1 (mod n) and bk ≡ 1 (mod n).

To show validity, we show that µa(n) fails for all a ∈ Z∗n when n is
prime.

By Euler’s theorem, bs ≡ an−1 ≡ 1 (mod n).

Since
√

1 = {1,−1} and bi−1 is a square root of bi for all i , either
all bk ≡ 1 (mod n) or the last non-1 element in the sequence
bk−1 ≡ −1 (mod p).

Hence, the test fails whenever n is prime, so µa(n) is a valid test of
compositeness.
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Usefulness of Miller-Rabin test

The Miller-Rabin test succeeds whenever an−1 6≡ 1 (mod n), so it
succeeds whenever the Fermat test ζa(n) would succeed.

But even when an−1 ≡ 1 (mod n), the Miller-Rabin test succeeds
if the last non-1 element in the sequence of b’s is one of the two
square roots of 1 that differ from ±1.

It can be proved that µa(n) succeeds for at least 3/4 of the possible
values of a. Empirically, the test almost always succeeds when n is
composite, and one has to work to find a such that µa(n) fails.
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Example of Miller-Rabin test

For example, take n = 561 = 3 · 11 · 17, the first Carmichael
number. Recall that a Carmichael number is an odd composite
number n that satisfies an−1 ≡ 1 (mod n) for all a ∈ Z∗n.
Let’s go through the steps of computing µ37(561).

We begin by finding t and s.
561 in binary is 1000110001 (a palindrome!).
Then n − 1 = 560 = (1000110000)2, so s = 4 and
t = (100011)2 = 35.
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Example (cont.)
We compute b0 = at = 3735 mod 561 = 265 with the help of the
computer.
We now compute the sequence of b’s, also with the help of the
computer. The results are shown in the table below:

b0 = 265
b1 = 100
b2 = 463
b3 = 67
b4 = 1

This sequence ends in 1, but the last non-1 element b3 6≡ −1
(mod 561), so the test µ37(561) succeeds. In fact, the test
succeeds for every a ∈ Z∗561 except for a = 1, 103, 256, 460, 511.
For each of those values, b0 = at ≡ 1 (mod 561).
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Optimizations

In practice, one computes only as many b’s as are necessary to
determine whether or not the test succeeds.

One can stop after finding bi such that bi ≡ ±1 (mod n).

I If bi ≡ −1 (mod n) and i < s, the test fails.

I If bi ≡ 1 (mod n) and i ≥ 1, the test succeeds.

In this case, we know that bi−1 6≡ ±1 (mod n), for otherwise
the algorithm would have stopped after computing bi−1.
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