Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests 000000000

CPSC 467b: Cryptography and Computer Security

Michael J. Fischer

Lecture 14 February 27, 2012

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 00000000000	Useful tests 000000000
Qu	adratic Residues,	Squares, and	Square Roo	ts	
	Square Roots Mo	odulo an Odd	Prime <i>p</i>		
	Square Roots Mo	odulo the Pro	duct of Two	o Odd Primes	
	Euler Criterion				
Fin	iding Square Root	S			
	Square Roots Mo	odulo Special	Primes		
	Square Roots Mo	odulo General	Odd Primes	5	
QR	R Probabilistic Cry	ptosystem			
	Summary				
Th	e Legendre and J	acobi Symbol	S		
	The Legendre sy	mbol			
	Jacobi Symbol				
	Computing the J	acobi Symbol			
Use	eful Tests of Com	positeness			
	Solovay-Strassen	Test of Com	positeness		
	Miller-Rabin Test	t of Composit	eness		
CPSC 467b,	Lecture 14		2/54		

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 00000000000	Useful tests 000000000

Quadratic Residues, Squares, and Square Roots

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 00000000000	Useful tests 000000000

Square roots in \mathbf{Z}_n^*

Recall from lecture 13 that to find points on an elliptic curve requires solving the equation

$$y^2 = x^3 + ax + b$$

for $y \pmod{p}$, and that requires computing square roots in \mathbf{Z}_p^* . Squares and square roots have several other cryptographic applications as well.

Today, we take a brief tour of the theory of *quadratic resides*.

	Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests 000000000
--	---------	--------------------	--------------------------	----------------	-------------------------------	---------------------------

Quadratic residues modulo n

An integer b is a square root of a modulo n if

$$b^2 \equiv a \pmod{n}$$
.

An integer a is a *quadratic residue (or perfect square)* modulo n if it has a square root modulo n.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto o	Legendre/Jacobi 0000000000	Useful tests 000000000

Quadratic residues in \mathbf{Z}_n^*

If $a, b \in \mathbf{Z}_n$ and $b^2 \equiv a \pmod{n}$, then

 $b \in \mathbf{Z}_n^*$ iff $a \in \mathbf{Z}_n^*$.

Why? Because

$$gcd(b, n) = 1$$
 iff $gcd(a, n) = 1$

This follows from the fact that $b^2 = a + un$ for some u, so if p is a prime divisor of n, then

$$p \mid b$$
 iff $p \mid a$.

Assume that all quadratic residues and square roots are in Z_n^* unless stated otherwise.

CPSC 467b, Lecture 14

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests 000000000

QR_n and QNR_n

We partition \mathbf{Z}_n^* into two parts.

 $\begin{aligned} & \operatorname{QR}_n = \{ a \in \mathbf{Z}_n^* \mid a \text{ is a quadratic residue modulo } n \}. \\ & \operatorname{QNR}_n = \mathbf{Z}_n^* - \operatorname{QR}_n. \end{aligned}$

 QR_n is the set of quadratic residues modulo n.

 QNR_n is the set of quadratic non-residues modulo n.

For $a \in QR_n$, we sometimes write

$$\sqrt{a} = \{ b \in \mathbf{Z}_n^* \mid b^2 \equiv a \pmod{n} \},\$$

the set of square roots of a modulo n.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests 000000000

Quadratic residues in Z_{15}^*

The following table shows all elements of $\mathbf{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$ and their squares.

	Ь	<i>b</i> ² mod 15
1		1
2		4
4		1
7		4
8	= -7	4
11	= -4	1
13	= -2	4
14	= -1	1

Thus, $\mathrm{QR}_{15} = \{1,4\}$ and $\mathrm{QNR}_{15} = \{2,7,8,11,13,14\}.$

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 00000000000	Useful tests 000000000
Sqrt mod <i>p</i>					

Quadratic residues modulo an odd prime p

Fact

For an odd prime p,

- Every $a \in QR_p$ has exactly two square roots in \mathbf{Z}_p^* ;
- Exactly 1/2 of the elements of \mathbf{Z}_p^* are quadratic residues.

In other words, if $a \in \operatorname{QR}_p$,

$$|\sqrt{a}| = 2.$$

 $|\operatorname{QR}_n| = |\mathbf{Z}_p^*|/2 = \frac{p-1}{2}.$

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto o	Legendre/Jacobi 00000000000	Useful tests 000000000
Sqrt mod p					

Quadratic residues in \mathbf{Z}_{11}^*

The following table shows all elements $b \in \mathbf{Z}_{11}^*$ and their squares.

b	<i>b</i> ² mod 11	Ь	-b	b ² mod 11
1	1	6	-5	3
2	4	7	-4	5
3	9	8	-3	9
4	5	9	-2	4
5	3	10	-1	1

Thus, $\mathrm{QR}_{11} = \{1,3,4,5,9\}$ and $\mathrm{QNR}_{11} = \{2,6,7,8,10\}.$

Outline	Quadratic Residues	Finding sqrt	QR crypto	Legendre/Jacobi	Useful tests
	00●00000	00000000	0	00000000000	000000000
Sqrt mod p					

Proof that $|\sqrt{a}| = 2$ modulo an odd prime p

Let $a \in QR_p$.

▶ It must have a square root $b \in \mathbf{Z}_{p}^{*}$.

•
$$(-b)^2 \equiv b^2 \equiv a \pmod{p}$$
, so $-b \in \sqrt{a}$.

- Moreover, $b \not\equiv -b \pmod{p}$ since $p \not\vdash 2b$, so $|\sqrt{a}| \ge 2$.
- ▶ Now suppose $c \in \sqrt{a}$. Then $c^2 \equiv a \equiv b^2 \pmod{p}$.
- Hence, $p | c^2 b^2 = (c b)(c + b)$.
- Since p is prime, then either p|(c-b) or p|(c+b) (or both).
- If $p \mid (c b)$, then $c \equiv b \pmod{p}$.
- If $p \mid (c + b)$, then $c \equiv -b \pmod{p}$.
- Hence, $c = \pm b$, so $\sqrt{a} = \{b, -b\}$, and $|\sqrt{a}| = 2$.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests 000000000
Sqrt mod p					

Proof that half the elements of \mathbf{Z}_p^* are in QR_p

- ▶ Each $b \in \mathbf{Z}_p^*$ is the square root of exactly one element of QR_p .
- The mapping $b \mapsto b^2 \mod p$ is a 2-to-1 mapping from \mathbf{Z}_p^* to QR_p .
- Therefore, $|QR_p| = \frac{1}{2} |\mathbf{Z}_p^*|$ as desired.

Outline	Quadratic Residues	Finding sqrt	QR crypto	Legendre/Jacobi	Useful tests
	○○○○●○○○	00000000	0	00000000000	000000000
Sqrt mod <i>pq</i>					

Quadratic residues modulo pq

We now turn to the case where n = pq is the product of two distinct odd primes.

Fact

Let n = pq for p, q distinct odd primes.

- Every $a \in QR_n$ has exactly four square roots in \mathbf{Z}_n^* ;
- Exactly 1/4 of the elements of \mathbf{Z}_n^* are quadratic residues.

In other words, if $a \in QR_n$,

$$ert \sqrt{a} ert = 4.$$
 $ert \operatorname{QR}_n ert = ert \mathbf{Z}_n^* ert / 4 = rac{(p-1)(q-1)}{4}.$

CPSC 467b, Lecture 14

Outline	Quadratic Residues	Finding sqrt	QR crypto	Legendre/Jacobi	Useful tests
	○○○○○●○○	00000000	0	00000000000	000000000
Sqrt mod <i>pq</i>					

Proof sketch

- Let $a \in QR_n$. Then $a \in QR_p$ and $a \in QR_q$.
- \blacktriangleright There are numbers $b_p \in \operatorname{QR}_p$ and $b_q \in \operatorname{QR}_q$ such that

•
$$\sqrt{a} \pmod{p} = \{\pm b_p\}$$
, and

$$\blacktriangleright \quad \sqrt{a} \pmod{q} = \{\pm b_q\}.$$

- ► Each pair (x, y) with x ∈ {±b_p} and y ∈ {±b_q} can be combined to yield a distinct element b_{x,y} in √a (mod n).¹
- ► Hence, $|\sqrt{a} \pmod{n}| = 4$, and $|QR_n| = |\mathbf{Z}_n^*|/4$.

CPSC 467b, Lecture 14

¹To find $b_{x,y}$ from x and y requires use of the Chinese Remainder theorem.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto o	Legendre/Jacobi 00000000000	Useful tests 000000000
Euler Criterion					

Testing for membership in QR_p

Theorem (Euler Criterion)

An integer a is a non-trivial² quadratic residue modulo an odd prime p iff

 $a^{(p-1)/2} \equiv 1 \pmod{p}.$

Proof in forward direction. Let $a \equiv b^2 \pmod{p}$ for some $b \not\equiv 0 \pmod{p}$. Then $a^{(p-1)/2} \equiv (b^2)^{(p-1)/2} \equiv b^{p-1} \equiv 1 \pmod{p}$

by Euler's theorem, as desired.

²A non-trivial quadratic residue is one that is not equivalent to 0 (mod p).

Outline	Quadratic Residues	Finding sqrt	QR crypto	Legendre/Jacobi	Useful tests
	○○○○○○●	00000000	0	00000000000	000000000
Euler Criterion					

Proof of Euler Criterion

Proof in reverse direction.

Suppose $a^{(p-1)/2} \equiv 1 \pmod{p}$. Clearly $a \not\equiv 0 \pmod{p}$. We find a square root *b* of *a* modulo *p*.

Let g be a primitive root of p. Choose k so that $a \equiv g^k \pmod{p}$, and let $\ell = (p-1)k/2$. Then

$$g^{\ell} \equiv g^{(p-1)k/2} \equiv (g^k)^{(p-1)/2} \equiv a^{(p-1)/2} \equiv 1 \pmod{p}.$$

Since g is a primitive root, $(p-1)|\ell$. Hence, 2|k and k/2 is an integer.

Let $b = g^{k/2}$. Then $b^2 \equiv g^k \equiv a \pmod{p}$, so b is a non-trivial square root of a modulo p, as desired.

Outline	Quadratic Residues	Finding sqrt	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests 000000000

Finding Square Roots

Outline	Quadratic Residues	Finding sqrt ●○○○○○○	QR crypto o	Legendre/Jacobi 0000000000	Useful tests 000000000
Special primes					

Finding square roots modulo prime $p \equiv 3 \pmod{4}$

The Euler criterion lets us test membership in QR_p for prime p, but it doesn't tell us how to quickly find square roots. They are easily found in the special case when $p \equiv 3 \pmod{4}$.

Theorem

Let
$$p \equiv 3 \pmod{4}$$
, $a \in \operatorname{QR}_p$. Then $b = a^{(p+1)/4} \in \sqrt{a} \pmod{p}$.

Proof.

p+1 is divisible by 4, so (p+1)/4 is an integer. Then

$$b^2 \equiv (a^{(p+1)/4})^2 \equiv a^{(p+1)/2} \equiv a^{1+(p-1)/2} \equiv a \cdot 1 \equiv a \pmod{p}$$

by the Euler Criterion.

Outline	Quadratic Residues	Finding sqrt	QR crypto	Legendre/Jacobi	Useful tests
	00000000	○●000000	0	0000000000	000000000
General primes					

Finding square roots for general primes

We now present an algorithm due to D. Shanks³ that finds square roots of quadratic residues modulo any odd prime p.

It bears a strong resemblance to the algorithm presented in lecture 9 for factoring the RSA modulus given both the encryption and decryption exponents.

³Shanks's algorithm appeared in his paper, "Five number-theoretic algorithms", in Proceedings of the Second Manitoba Conference on Numerical Mathematics, Congressus Numerantium, No. VII, 1973, 51–70. Our treatment is taken from the paper by Jan-Christoph Schlage-Puchta", "On Shank's Algorithm for Modular Square Roots", *Applied Mathematics E-Notes, 5* (2005), 84–88.

Outline	Quadratic Residues	Finding sqrt ○○●○○○○○	QR crypto o	Legendre/Jacobi 00000000000	Useful tests 000000000
General primes					

Shank's algorithm

Let p be an odd prime. Write $\phi(p) = p - 1 = 2^{s}t$, where t is odd. (Recall: s is # trailing 0's in the binary expansion of p - 1.)

Because p is odd, p-1 is even, so $s \ge 1$.

Outline	Quadratic Residues	Finding sqrt ○○○●○○○○	QR crypto 0	Legendre/Jacobi 00000000000	Useful tests 000000000
General primes					

A special case

In the special case when s = 1, then p - 1 = 2t, so p = 2t + 1. Writing the odd number t as $2\ell + 1$ for some integer ℓ , we have

$$p = 2(2\ell + 1) + 1 = 4\ell + 3,$$

so $p \equiv 3 \pmod{4}$.

This is exactly the case that we handled above.

Outline	Quadratic Residues	Finding sqrt	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests 000000000
General primes					

Overall structure of Shank's algorithm

Let $p - 1 = 2^{s}t$ be as above, where p is an odd prime.

Assume $a \in QR_p$ is a quadratic residue and $u \in QNR_p$ is a quadratic non-residue.

We can easily find u by choosing random elements of \mathbf{Z}_p^* and applying the Euler Criterion.

The goal is to find x such that $x^2 \equiv a \pmod{p}$.

Outline	Quadratic Residues	Finding sqrt ○0000●00	QR crypto o	Legendre/Jacobi 0000000000	Useful tests 000000000
General primes					

Shanks's algorithm

1.	Let s, t satisfy $p - 1 = 2^{s}t$ and t odd.
2.	Let $u \in QNR_p$.
3.	k = s
4.	$z = u^t \mod p$
5.	$x = a^{(t+1)/2} \mod p$
6.	$b = a^t \mod p$
7.	while $(b \not\equiv 1 \pmod{p})$ {
8.	let <i>m</i> be the least integer with $b^{2^m} \equiv 1 \pmod{p}$
9.	$y = z^{2^{k-m-1}} \bmod p$
10.	$z = y^2 \mod p$
11.	$b = bz \mod p$
12.	$x = xy \mod p$
13.	k = m
14.	}
15.	return x

Outline	Quadratic Residues	Finding sqrt ○00000●0	QR crypto 0	Legendre/Jacobi 00000000000	Useful tests 000000000
General primes					

Loop invariant

The congruence

$$x^2 \equiv ab \pmod{p}$$

is easily shown to be a loop invariant.

It's clearly true initially since $x^2 \equiv a^{t+1}$ and $b \equiv a^t \pmod{p}$.

Each time through the loop, *a* is unchanged, *b* gets multiplied by y^2 (lines 10 and 11), and *x* gets multiplied by *y* (line 12); hence the invariant remains true regardless of the value of *y*.

If the program terminates, we have $b \equiv 1 \pmod{p}$, so $x^2 \equiv a$, and x is a square root of $a \pmod{p}$.

Outline	Quadratic Residues	Finding sqrt ○000000●	QR crypto 0	Legendre/Jacobi 00000000000	Useful tests 000000000
General primes					

Termination proof (sketch)

The algorithm terminates after at most s - 1 iterations of the loop.

To see why, we look at the orders⁴ of b and $z \pmod{p}$ and show the following loop invariant:

At the start of each loop iteration (before line 8), ord(b) is a power of 2 and $ord(b) < ord(z) = 2^k$.

After line 8, m < k since $2^m = \operatorname{ord}(b) < 2^k$. Line 13 sets k = m for the next iteration, so k decreases on each iteration.

The loop terminates when $b \equiv 1 \pmod{p}$. Then $\operatorname{ord}(b) = 1 < 2^k$, so $k \ge 1$. Hence, the loop is executed at most s - 1 times.

⁴Recall that the order of an element g modulo p is the least positive integer k such that $g^k \equiv 1 \pmod{p}$.

Outline	Quadratic Residues	Finding sqrt	QR crypto	Legendre/Jacobi	Useful tests
	0000000	0000000	0	00000000000	00000000

QR Probabilistic Cryptosystem

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto o	Legendre/Jacobi 0000000000	Useful tests 000000000

A hard problem associated with quadratic residues

Let n = pq, where p and q are distinct odd primes.

Recall that each $a \in QR_n$ has 4 square roots, and 1/4 of the elements in \mathbf{Z}_n^* are quadratic residues.

Some elements of \mathbf{Z}_n^* are easily recognized as non-residues, but there is a subset of non-residues (which we denote as Q_n^{00}) that are *hard to distinguish* from quadratic residues without knowing pand q.

This allows for public key encryption of single bits: A random element of QR_n encrypts 1; a random element of Q_n^{00} encrypts 0.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto o	Legendre/Jacobi 00000000000	Useful tests 000000000

Quadratic residues modulo n = pq

Let n = pq, p, q distinct odd primes.

We divide the numbers in \mathbf{Z}_n^* into four classes depending on their membership in QR_p and QR_q .⁵

Under these definitions,

$$QR_n = Q_n^{11}$$

$$\mathrm{QNR}_n = Q_n^{00} \cup Q_n^{01} \cup Q_n^{10}$$

⁵To be strictly formal, we classify $a \in \mathbf{Z}_n^*$ according to whether or not $(a \mod p) \in QR_n$ and whether or not $(a \mod q) \in QR_n$.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto o	Legendre/Jacobi 0000000000	Useful tests 000000000

Quadratic residuosity problem

Definition (Quadratic residuosity problem) The *quadratic residuosity problem* is to decide, given $a \in Q_n^{00} \cup Q_n^{11}$, whether or not $a \in Q_n^{11}$.

Fact

There is no known feasible algorithm for solving the quadratic residuosity problem that gives the correct answer significantly more than 1/2 the time for uniformly distributed random $a \in Q_n^{00} \cup Q_n^{11}$, unless the factorization of n is known.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto o	Legendre/Jacobi 0000000000	Useful tests 000000000

Goldwasser-Micali probabilistic cryptosystem

The Goldwasser-Micali cryptosystem is based on the assumed hardness of the quadratic residuosity problem.

The public key consist of a pair e = (n, y), where n = pq for distinct odd primes p, q, and y is any member of Q_n^{00} . The private key consists of p. The message space is $\mathcal{M} = \{0, 1\}$. (Single bits!)

To encrypt $m \in \mathcal{M}$, Alice chooses a random $a \in QR_n$. She does this by choosing a random member of \mathbf{Z}_n^* and squaring it.

If m = 0, then $c = a \mod n \in Q_n^{11}$. If m = 1, then $c = ay \mod n \in Q_n^{00}$.

The problem of finding *m* given *c* is equivalent to the problem of testing if $c \in QR_n (= Q_n^{11})$, given that $c \in Q_n^{00} \cup Q_n^{11}$.

Outline Quadrati	c Residues Finding sqrt	QR crypto	 Legendre/Jacobi 00000000000 	Useful tests 000000000

Decryption in Goldwasser-Micali encryption

Bob, knowing the private key p, can use the Euler Criterion to quickly determine whether or not $c \in QR_p$ and hence whether $c \in Q_n^{11}$ or $c \in Q_n^{00}$, thereby determining m.

Eve's problem of determining whether c encrypts 0 or 1 is the same as the problem of distinguishing between membership in Q_n^{00} and Q_n^{11} , which is just the quadratic residuosity problem, assuming the ciphertexts are uniformly distributed.

One can show that every element of Q_n^{11} is equally likely to be chosen as the ciphertext c in case m = 0, and every element of Q_n^{00} is equally likely to be chosen as the ciphertext c in case m = 1. If the messages are also uniformly distributed, then any element of $Q_n^{00} \cup Q_n^{11}$ is equally likely to be the ciphertext.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto ●	Legendre/Jacobi 0000000000	Useful tests 000000000
Summary					

Important facts about quadratic residues

- 1. If p is odd prime, then $|QR_p| = |\mathbf{Z}_p^*|/2$, and for each $a \in QR_p$, $|\sqrt{a}| = 2$.
- 2. If n = pq, $p \neq q$ odd primes, then $|QR_n| = |\mathbf{Z}_n^*|/4$, and for each $a \in QR_n$, $|\sqrt{a}| = 4$.
- 3. Euler criterion: $a \in QR_p$ iff $a^{(p-1)/2} \equiv 1 \pmod{p}$, p odd prime.
- 4. If *n* is odd prime, $a \in QR_n$, can feasibly find $y \in \sqrt{a}$.
- 5. If n = pq, $p \neq q$ odd primes, then distinguishing Q_n^{00} from Q_n^{11} is believed to be infeasible. Hence, infeasible to find $y \in \sqrt{a}$. Why? If not, one could attempt to find $y \in \sqrt{a}$, check that $y^2 \equiv a$ (mod *n*), and conclude that $a \in Q^{11}$ if successful.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto O	Legendre/Jacobi	Useful tests 000000000

The Legendre and Jacobi Symbols

Outline	Quadratic Residues	Finding sqrt	QR crypto	Legendre/Jacobi	Useful tests
	0000000	00000000	0	●0000000000	000000000
Legendre					

Legendre symbol

Let p be an odd prime, a an integer. The Legendre symbol $\left(\frac{a}{p}\right)$ is a number in $\{-1, 0, +1\}$, defined as follows:

$$\begin{pmatrix} a \\ p \end{pmatrix} = \begin{cases} +1 & \text{if } a \text{ is a non-trivial quadratic residue modulo } p \\ 0 & \text{if } a \equiv 0 \pmod{p} \\ -1 & \text{if } a \text{ is } not \text{ a quadratic residue modulo } p \end{cases}$$

By the Euler Criterion, we have

Theorem

Let p be an odd prime. Then

$$\left(\frac{a}{p}\right) \equiv a^{\left(\frac{p-1}{2}\right)} \pmod{p}$$

Note that this theorem holds even when $p \mid a$.

CPSC 467b, Lecture 14

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 0●00000000	Useful tests 000000000
Legendre					

Properties of the Legendre symbol

The Legendre symbol satisfies the following *multiplicative property*:

Fact

Let p be an odd prime. Then

$$\left(\frac{a_1a_2}{p}\right) = \left(\frac{a_1}{p}\right) \left(\frac{a_2}{p}\right)$$

Not surprisingly, if a_1 and a_2 are both non-trivial quadratic residues, then so is a_1a_2 . Hence, the fact holds when

$$\left(\frac{a_1}{p}\right) = \left(\frac{a_2}{p}\right) = 1.$$

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 00●0000000	Useful tests 000000000
Legendre					

Product of two non-residues

Suppose $a_1 \notin QR_p$, $a_2 \notin QR_p$. The above fact asserts that the product a_1a_2 is a quadratic residue since

$$\left(\frac{a_1a_2}{p}\right) = \left(\frac{a_1}{p}\right) \left(\frac{a_2}{p}\right) = (-1)(-1) = 1.$$

Here's why.

- Let g be a primitive root of p.
- Write $a_1 \equiv g^{k_1} \pmod{p}$ and $a_2 \equiv g^{k_2} \pmod{p}$.
- ▶ Both k_1 and k_2 are odd since a_1 , $a_2 \notin QR_p$.
- But then $k_1 + k_2$ is even.
- Hence, g^{(k₁+k₂)/2} is a square root of a₁a₂ ≡ g^{k₁+k₂} (mod p), so a₁a₂ is a quadratic residue.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi	Useful tests 000000000
Jacobi					

The Jacobi symbol

The *Jacobi symbol* extends the Legendre symbol to the case where the "denominator" is an arbitrary odd positive number *n*.

Let *n* be an odd positive integer with prime factorization $\prod_{i=1}^{k} p_i^{e_i}$. We define the *Jacobi symbol* by

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{e_i} \tag{1}$$

The symbol on the left is the Jacobi symbol, and the symbol on the right is the Legendre symbol.

(By convention, this product is 1 when k = 0, so $\left(\frac{a}{1}\right) = 1$.)

The Jacobi symbol extends the Legendre symbol since the two definitions coincide when n is an odd prime.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi ○○○0●○○○○○○	Useful tests 000000000
Jacobi					

Meaning of Jacobi symbol

What does the Jacobi symbol mean when n is not prime?

- If $\left(\frac{a}{n}\right) = +1$, a might or might not be a quadratic residue.
- If $\left(\frac{a}{n}\right) = 0$, then $gcd(a, n) \neq 1$.
- If $\left(\frac{a}{n}\right) = -1$ then *a* is definitely not a quadratic residue.

Outline	Quadratic Residues	Finding sqrt	QR crypto	Legendre/Jacobi	Useful tests
	00000000	00000000	0	○○○○○●○○○○○	000000000
Jacobi					

Jacobi symbol = +1 for n = pq

Let n = pq for p, q distinct odd primes. Since

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right) \left(\frac{a}{q}\right) \tag{2}$$

there are two cases that result in $\left(\frac{a}{n}\right) = 1$:

1.
$$\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = +1$$
, or
2. $\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = -1$.

Outline	Quadratic Residues 00000000	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi	Useful tests 000000000
Jacobi					

Case of both Jacobi symbols = +1

If
$$\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = +1$$
, then $a \in \mathrm{QR}_p \cap \mathrm{QR}_q = Q_n^{11}$.

It follows by the Chinese Remainder Theorem that $a \in QR_n$.

This fact was implicitly used in the proof sketch that $|\sqrt{a}| = 4$.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi	Useful tests 000000000
Jacobi					

Case of both Jacobi symbols = -1

If
$$\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = -1$$
, then $a \in \text{QNR}_p \cap \text{QNR}_q = Q_n^{00}$.

In this case, a is not a quadratic residue modulo n.

Such numbers *a* are sometimes called "pseudo-squares" since they have Jacobi symbol 1 but are not quadratic residues.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi	Useful tests 000000000
Identities					

Computing the Jacobi symbol

The Jacobi symbol $\left(\frac{a}{n}\right)$ is easily computed from its definition (equation 1) and the Euler Criterion, given the factorization of *n*.

Similarly, gcd(u, v) is easily computed without resort to the Euclidean algorithm given the factorizations of u and v.

The remarkable fact about the Euclidean algorithm is that it lets us compute gcd(u, v) efficiently, without knowing the factors of uand v.

A similar algorithm allows us to compute the Jacobi symbol $\left(\frac{a}{n}\right)$ efficiently, without knowing the factorization of *a* or *n*.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto o	Legendre/Jacobi ○○○○○○○●○	Useful tests 000000000
Identities					

Identities involving the Jacobi symbol

The algorithm is based on identities satisfied by the Jacobi symbol:

1.
$$\left(\frac{0}{n}\right) = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{if } n \neq 1; \end{cases}$$

2. $\left(\frac{2}{n}\right) = \begin{cases} 1 & \text{if } n \equiv \pm 1 \pmod{8} \\ -1 & \text{if } n \equiv \pm 3 \pmod{8}; \end{cases}$
3. $\left(\frac{a_1}{n}\right) = \left(\frac{a_2}{n}\right) \text{ if } a_1 \equiv a_2 \pmod{n};$
4. $\left(\frac{2a}{n}\right) = \left(\frac{2}{n}\right) \cdot \left(\frac{a}{n}\right);$
5. $\left(\frac{a}{n}\right) = \begin{cases} \left(\frac{n}{a}\right) & \text{if } a, n \text{ odd and } \neg(a \equiv n \equiv 3 \pmod{4}) \\ -\left(\frac{n}{a}\right) & \text{if } a, n \text{ odd and } a \equiv n \equiv 3 \pmod{4}. \end{cases}$

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi ○○○○○○○○●	Useful tests 000000000
Identities					

A recursive algorithm for computing Jacobi symbol

```
/* Precondition: a, n >= 0; n is odd */
int jacobi(int a, int n) {
  if (a == 0)
                                 /* identity 1 */
   return (n==1) ? 1 : 0;
  if (a == 2)
                                 /* identity 2 */
   switch (n%8) {
   case 1: case 7: return 1;
    case 3: case 5: return -1;
   }
  if (a \ge n)
                                 /* identity 3 */
    return jacobi(a%n, n);
  if (a\%2 == 0)
                                /* identity 4 */
    return jacobi(2,n)*jacobi(a/2, n);
  /* a is odd */
                                /* identity 5 */
  return (a%4 == 3 && n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);
```

Outline	Quadratic Residues	Finding sqrt	QR crypto	Legendre/Jacobi	Useful tests
	0000000	0000000		0000000000	00000000

Useful Tests of Compositeness

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests
Solovay-Strasse	n				

Solovay-Strassen compositeness test

Recall that a test of compositeness for *n* is a set of predicates $\{\tau_a(n)\}_{a \in \mathbb{Z}_n^*}$ such that if $\tau(n)$ succeeds (is true), then *n* is composite.

The *Solovay-Strassen Test* is the set of predicates $\{\nu_a(n)\}_{a \in \mathbb{Z}_n^*}$, where

$$u_a(n) = \text{true iff } \left(\frac{a}{n}\right) \not\equiv a^{(n-1)/2} \pmod{n}.$$

If *n* is prime, the test always fails by the Euler Criterion. Equivalently, if some $\nu_a(n)$ succeeds for some *a*, then *n* must be composite.

Hence, the test is a valid test of compositeness.

Outline	Quadratic Residues	Finding sqrt	QR crypto	Legendre/Jacobi	Useful tests
	00000000	00000000	0	00000000000	○●○○○○○○○
Solovay-Strasse	n				

Usefulness of Strassen-Solovay test

Let $b = a^{(n-1)/2}$. The Strassen-Solovay test succeeds if $\left(\frac{a}{n}\right) \neq b \pmod{n}$. There are two ways they could fail to be equal:

1. $b^2 \equiv a^{n-1} \not\equiv 1 \pmod{n}$.

In this case, $b \not\equiv \pm 1 \pmod{n}$. This is just the Fermat test $\zeta_a(n)$ from lecture 9.

2. $b^2 \equiv a^{n-1} \equiv 1 \pmod{n}$ but $b \not\equiv \left(\frac{a}{n}\right) \pmod{n}$.

In this case, $b \in \sqrt{1} \pmod{n}$, but *b* might have the opposite sign from $\left(\frac{a}{n}\right)$, or it might not even be ± 1 since 1 has additional square roots when *n* is composite.

Strassen and Solovay show the probability that $\nu_a(n)$ succeeds for a randomly-chosen $a \in \mathbf{Z}_n^*$ is at least 1/2 when n is composite.⁶ Hence, the Strassen-Solovay test is a useful test of compositeness.

⁶R. Solovay and V. Strassen, "A Fast Monte-Carlo Test for Primality", *SIAM J. Comput.* 6:1 (1977), 84–85.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests
Miller-Rabin					

Miller-Rabin test – an overview

The Miller-Rabin Test is more complicated to describe than the Solovay-Strassen Test, but the probability of error (that is, the probability that it fails when n is composite) seems to be lower.

Hence, the same degree of confidence can be achieved using fewer iterations of the test. This makes it faster when incorporated into a primality-testing algorithm.

This test is closely related to the algorithm from Lecture 9 for factoring an RSA modulus given the encryption and decryption keys and to Shanks Algorithm given in this lecture for computing square roots modulo an odd prime.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests ○○0●00000
Miller-Rabin					

Miller-Rabin test

The Miller-Rabin test $\mu_a(n)$ computes a sequence b_0, b_1, \ldots, b_s in \mathbf{Z}_n^* . The test succeeds if $b_s \not\equiv 1 \pmod{n}$ or the last non-1 element exists and is $\not\equiv -1 \pmod{n}$.

The sequence is computed as follows:

- 1. Write $n 1 = 2^{s}t$, where t is an odd positive integer.
- 2. Let $b_0 = a^t \mod n$.
- 3. For i = 1, 2, ..., s, let $b_i = (b_{i-1})^2 \mod n$.

An easy inductive proof shows that $b_i = a^{2^i t} \mod n$ for all i, $0 \le i \le s$. In particular, $b_s \equiv a^{2^s t} = a^{n-1} \pmod{n}$.

Outline	Quadratic Residues 00000000	Finding sqrt 00000000	QR crypto O	Legendre/Jacobi 00000000000	Useful tests
Miller-Rabin					

Validity of the Miller-Rabin test

The Miller-Rabin test fails when either every $b_k \equiv 1 \pmod{n}$ or for some k, $b_{k-1} \equiv -1 \pmod{n}$ and $b_k \equiv 1 \pmod{n}$.

To show validity, we show that $\mu_a(n)$ fails for all $a \in \mathbb{Z}_n^*$ when n is prime.

By Euler's theorem,
$$b^s \equiv a^{n-1} \equiv 1 \pmod{n}$$
.

Since $\sqrt{1} = \{1, -1\}$ and b_{i-1} is a square root of b_i for all i, either all $b_k \equiv 1 \pmod{n}$ or the last non-1 element in the sequence $b_{k-1} \equiv -1 \pmod{p}$.

Hence, the test fails whenever *n* is prime, so $\mu_a(n)$ is a valid test of compositeness.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests 000000000
Miller-Rabin					

Usefulness of Miller-Rabin test

The Miller-Rabin test succeeds whenever $a^{n-1} \not\equiv 1 \pmod{n}$, so it succeeds whenever the Fermat test $\zeta_a(n)$ would succeed.

But even when $a^{n-1} \equiv 1 \pmod{n}$, the Miller-Rabin test succeeds if the last non-1 element in the sequence of *b*'s is one of the two square roots of 1 that differ from ± 1 .

It can be proved that $\mu_a(n)$ succeeds for at least 3/4 of the possible values of *a*. Empirically, the test almost always succeeds when *n* is composite, and one has to work to find *a* such that $\mu_a(n)$ fails.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi	Useful tests ○○○○○●○○
Miller-Rabin					

Example of Miller-Rabin test

For example, take $n = 561 = 3 \cdot 11 \cdot 17$, the first Carmichael number. Recall that a *Carmichael number* is an odd composite number *n* that satisfies $a^{n-1} \equiv 1 \pmod{n}$ for all $a \in \mathbb{Z}_n^*$. Let's go through the steps of computing $\mu_{37}(561)$.

We begin by finding *t* and *s*. 561 in binary is 1000110001 (a palindrome!). Then $n - 1 = 560 = (1000110000)_2$, so s = 4 and $t = (100011)_2 = 35$.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 0000000000	Useful tests ○○○○○○●○
Miller-Rabin					

Example (cont.)

We compute $b_0 = a^t = 37^{35} \mod 561 = 265$ with the help of the computer.

We now compute the sequence of b's, also with the help of the computer. The results are shown in the table below:

 $b_0 = 265$ $b_1 = 100$ $b_2 = 463$ $b_3 = 67$ $b_4 = 1$

This sequence ends in 1, but the last non-1 element $b_3 \not\equiv -1$ (mod 561), so the test $\mu_{37}(561)$ succeeds. In fact, the test succeeds for every $a \in \mathbb{Z}_{561}^*$ except for a = 1, 103, 256, 460, 511. For each of those values, $b_0 = a^t \equiv 1 \pmod{561}$.

Outline	Quadratic Residues	Finding sqrt 00000000	QR crypto 0	Legendre/Jacobi 00000000000	Useful tests ○○○○○○○●
Miller-Rabin					

Optimizations

In practice, one computes only as many b's as are necessary to determine whether or not the test succeeds.

One can stop after finding b_i such that $b_i \equiv \pm 1 \pmod{n}$.

- If $b_i \equiv -1 \pmod{n}$ and i < s, the test fails.
- If $b_i \equiv 1 \pmod{n}$ and $i \geq 1$, the test succeeds.

In this case, we know that $b_{i-1} \not\equiv \pm 1 \pmod{n}$, for otherwise the algorithm would have stopped after computing b_{i-1} .