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Two-key locks

There are many situations in which one wants to grant access to a
resource only if a sufficiently large group of agents cooperate.

For example, the office safe of a supermarket might require both
the manager’s key and the armored car driver’s key in order to be
opened.

This protects the store against a dishonest manager or armored car
driver, and it also prevents an armed robber from coercing the
manager into opening the safe.

A similar 2-key system is used for safe deposit boxes in banks.
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Two-part secret splitting

We might like to achieve the same properties for cryptographic
keys or other secrets.

Let k be the key for a symmetric cryptosystem. One might wish to
split k into two shares k1 and k2 so that by themselves, neither k1

nor k2 by itself reveals any information about k , but when suitably
combined, k can be recovered.

A simple way to do this is to choose k1 uniformly at random and
then let k2 = k ⊕ k1.

Both k1 and k2 are uniformly distributed over the key space and
hence give no information about k .

However, combined with XOR, they reveal k , since k = k1 ⊕ k2.
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Comparison with one-time pad

Indeed, the one-time pad cryptosystem of Lecture 3 can be viewed
as an instance of secret splitting.

Here, Alice’s secret is her message m.

The two shares are the ciphertext c and the key k .

Neither by themselves gives any information about m, but together
they reveal m = k ⊕ c .
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Multi-part secret splitting

Secret splitting generalizes to more than two shares.

Imagine a large company that restricts access to important
company secrets to only its five top executives, say the president,
vice-president, treasurer, CEO, and CIO.

They don’t want any executive to be able to access the data alone
since they are concerned that an executive might be blackmailed
into giving confidential data to a competitor.
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Multi-part secret splitting (cont.)

On the other hand, they also don’t want to require that all five
executives get together to access their data because

I this would be cumbersome;

I they worry about the death or incapacitation of any single
individual.

They decide as a compromise that any three of them should be
able to access the secret data, but one or two of them operating
alone should not have access.
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Shamir’s Secret Splitting Scheme
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(τ, k) threshold secret spitting scheme

A (τ, k) threshold secret splitting scheme splits a secret s into
shares s1, . . . , sk .

Any subset of τ or more shares allows s to be recovered, but no
subset of shares of size less than τ gives any information about s.

The executives of the previous example thus want a (3, 5)
threshold secret splitting scheme: The secret key is to be split into
5 shares, any 3 of which allow the secret to be recovered.
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A threshold scheme based on polynomials

Shamir proposed a threshold scheme based on polynomials.

A polynomial of degree d is an expression

f (x) = a0 + a1x + a2x2 + . . .+ adxd ,

where ad 6= 0.

The numbers a0, . . . , ad are called the coefficients of f .

A polynomial can be simultaneously regarded as a function and as
an object determined by its vector of coefficients.
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Interpolation

Interpolation is the process of finding a polynomial that goes
through a given set of points.

Fact
Let (x1, y1), . . . , (xk , yk) be points, where all of the xi ’s are
distinct. There is a unique polynomial f (x) of degree at most
k − 1 that passes through all k points, that is, for which
f (xi ) = yi (1 ≤ 1 ≤ k).

f can be found using Lagrangian interpolation. This statement
generalizes the familiar statement from high school geometry that
two points determine a line.
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Lagrangian interpolation method

One way to understand Lagrangian interpolation is to consider the
polynomial

δi (x) =
(x − x1)(x − x2) . . . (x − xi−1) · (x − xi+1) . . . (x − xk)

(xi − x1)(xi − x2) . . . (xi − xi−1) · (xi − xi+1) . . . (xi − xk)

Although this looks at first like a rational function, it is actually
just a polynomial in x since the denominator contains only the
x-values of the given points and not the variable x .

δi (x) has the easily-checked property that δi (xi ) = 1, and
δi (xj) = 0 for j 6= i .

CPSC 467b, Lecture 19 13/47



Outline Secret splitting Shamir’s scheme Bit commitment

Lagrangian interpolation method (cont.)
Using δi (x), the polynomial

p(x) =
k∑

i=1

yi δi (x)

is the desired interpolating polynomial, since p(xi ) = yi for
i = 1, . . . , k.

To actually find the coefficients of p(x) when written as

p(x) =
k∑

i=0

aix
i ,

it is necessary to expand p(x) by multiplying out the factors and
collect like terms.
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Interpolation over finite fields

Interpolation also works over finite fields such as Zp for prime p.

It is still true that any k points with distinct x coordinates
determine a unique polynomial of degree at most k − 1 over Zp.

Of course, we must have k ≤ p since Zp has only p distinct
coordinate values in all.
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Shamir’s secret splitting scheme

Here’s how Shamir’s (τ, k) secret splitting scheme works.

Let Alice (also called the dealer) have secret s.

She constructs a polynomial of degree at most τ − 1 as follows:

I She sets a0 = s.

I She chooses a1, . . . , aτ−1 ∈ Zp at random.

I She chooses xi = i . (1 ≤ i ≤ k)

I She chooses yi = f (i). (1 ≤ i ≤ k)1

I Share si = (xi , yi ) = (i , f (i)).

1f (i) is the result of evaluating the polynomial f at the value x = i . All
arithmetic is over the field Zp, so we omit explicit mention of mod p.
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τ shares are necessary and sufficient to reconstruct s

Theorem
s can be reconstructed from any set T of τ or more shares.

Proof.
Suppose si1 , . . . , siτ are τ distinct shares in T .

By interpolation, there is a unique polynomial g(x) of degree
d ≤ τ − 1 that passes through these shares.

By construction of the shares, f (x) also passes through these same
shares; hence g = f as polynomials.

In particular, g(0) = f (0) = s is the secret.

Theorem
Any set T ′ of fewer than τ shares gives no information about s.
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Proof.
Let T ′ = {si1 , . . . , sir } be a set of r < τ shares.

There are in general many polynomials of degree ≤ τ − 1 that
interpolate the points in T ′.

In particular, for each s ′ ∈ Zp, there is a polynomial gs′ that
interpolates the shares in T ′ ∪ {(0, s ′)}.

Each of these polynomials passes through all of the shares in T ′,
so each is a plausible candidate for f . Moreover, gs′(0) = s ′, so
each s ′ is a plausible candidate for the secret s.

One can show further that the number of polynomials that
interpolate T ′ ∪ {(0, s ′)} is the same for each s ′ ∈ Zp, so each
possible candidate s ′ is equally likely to be s.

Hence, the shares in T ′ give no information at all about s.
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Dishonesty

Secret splitting with semi-honest parties

Shamir’s scheme is an example of a protocol that works assuming
semi-honest parties.

These are players that follow the protocol but additionally may
collude in an attempt to discover secret information.

We just saw that no coalition of fewer than τ players could learn
anything about the dealer’s secret, even if they pooled all of their
shares.
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Dishonesty

Secret splitting with dishonest dealer

In practice, either the dealer or some of the players (or both) may
be dishonest and fail to follow the protocol. The honest players
would like some guarantees even in such situations.

A dishonest dealer can always lie about the true value of her
secret. Even so, the honest players want assurance that their
shares do in fact encode a unique secret, that is, all sets of τ
shares reconstruct the same secret s.
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Dishonesty

Failure of Shamir’s scheme with dishonest dealer

Shamir’s (τ, k) threshold scheme assumes that all shares lie on a
single polynomial of degree at most k − 1.

This might not hold if the dealer is dishonest and gives bad shares
to some of the players.

The players have no way to discover that they have bad shares
until later when they try to reconstruct s.
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Dishonesty

Verifiable secret sharing

In verifiable secret sharing, the sharing phase is an active protocol
involving the dealer and all of the players.

At the end of this phase, either the dealer is exposed as being
dishonest, or all of the players end up with shares that are
consistent with a single secret.

Needless to say, protocols for verifiable secret sharing are quite
complicated.
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Dishonesty

Dishonest players

Dishonest players present another kind of problem. These are
players that fail to follow the protocol. During the reconstruction
phase, they may fail to supply their share, or they may present a
(possibly different) corrupted share to each other player.

With Shamir’s scheme, a share that just disappears does not
prevent the secret from being reconstructed, as long as enough
valid shares remain.

But a player who lies about his share during the reconstruction
phase can cause other players to reconstruct incorrect values for
the secret.
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Dishonesty

Fault-tolerance in secret sharing protocols

A fault-tolerant secret sharing scheme should allow the secret to
be correctly reconstructed, even in the face of a certain number of
corrupted shares.

Of course, it may be desirable to have schemes that can tolerate
dishonesty in both dealer and a limited number of players.

The interested reader is encouraged to explore the extensive
literature on this subject.
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Bit Commitment Problem
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Bit guessing game

Alice and Bob want to play a guessing game over the internet.

Alice says,

“I’m thinking of a bit. If you guess my bit correctly, I’ll
give you $10. If you guess wrong, you give me $10.”

Bob says,

“Ok, I guess zero.”

Alice replies,

“Sorry, you lose. I was thinking of one.”
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Preventing Alice from changing her mind

While this game may seem fair on the surface, there is nothing to
prevent Alice from changing her mind after Bob makes his guess.

Even if Alice and Bob play the game face to face, they still must do
something to commit Alice to her bit before Bob makes his guess.

For example, Alice might be required to write her bit down on a
piece of paper and seal it in an envelope.

After Bob makes his guess, he opens the envelope to know
whether he won or lost.

Writing down the bit commits Alice to that bit, even though Bob
doesn’t learn its value until later.
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Bit-commitment problem

A bit commitment or blob or cryptographic envelope is an
electronic analog of a sealed envelope.

Intuitively, a blob has two properties:

1. The bit inside the blob remains hidden until the blob is
opened.

2. The bit inside the blob cannot be changed, that is, blob
cannot be opened in different ways to reveal different bits.
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Bit-commitment primitives

A blob is produced by a protocol commit(b) between Alice and
Bob. We assume initially that only Alice knows b.

At the end of the commit protocol, Bob has a blob c containing
Alice’s bit b, but he should have no information about b’s value.

Later, Alice and Bob can run a protocol open(c) to reveal the bit
contained in c to Bob.
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Requirements for bit commitment

Alice and Bob do not trust each other, so each wants protection
from cheating by the other.

I Alice wants to be sure that Bob cannot learn b after running
commit(b), even if he cheats.

I Bob wants to be sure that all successful runs of open(c)
reveal the same bit b′, no matter what Alice does.

Note that we do not require that Alice tell the truth about her
private bit b. A dishonest Alice can always pretend her bit was
b′ 6= b when producing c. But if she does, c can only be opened to
b′, not to b.

These ideas should become clearer in the protocols below.
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From crypto

Bit Commitment Using Symmetric

Cryptography
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From crypto

A näıve approach to building a bit-commitment scheme

A näıve way to use a symmetric cryptosystem for bit commitment
is for Alice to encrypt b with a private key k to get blob c = Ek(b).

She opens it by releasing k . Anyone can compute b = Dk(c).

Alice can easily cheat if she can find a colliding triple (c, k0, k1)
with the property that Dk0(c) = 0 and Dk1(c) = 1.

She “commits” by sending c to Bob.

Later, she can choose to send Bob either k0 or k1.

This isn’t just a hypothetical problem. Suppose Alice uses the
most secure cryptosystem of all, a one-time pad, so Dk(c) = c ⊕ k .

Then (c, c ⊕ 0, c ⊕ 1) is a colliding triple.
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From crypto

Another attempt
The protocol below tries to make it harder for Alice to cheat by
making it possible for Bob to detect most bad keys.

Alice Bob

To commit(b):

1.
r←− Choose random string r .

2. Choose random key k.

Compute c = Ek(r · b).
c−→ c is commitment.

To open(c):

3. Send k .
k−→ Let r ′ · b′ = Dk(c).

Check r ′ = r .
b′ is revealed bit.
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From crypto

Security of second attempt

For many cryptosystems (e.g., DES), this protocol does indeed
prevent Alice from cheating, for she will have difficulty finding any
two keys k0 and k1 such that Ek0(r · 0) = Ek1(r · 1), and r is
different for each run of the protocol.

However, for the one-time pad, she can cheat as before: She just
takes c to be random and lets k0 = c ⊕ (r · 0) and k1 = c ⊕ (r · 1).

Then Dkb
(c) = r · b for b ∈ {0, 1}, so the revealed bit is 0 or 1

depending on whether Alice sends k0 or k1 in step 3.
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From crypto

Need for a different approach

We see that not all secure cryptosystems have the properties we
need in order to make the protocol secure.

We need a property analogous to the strong collision-free property
for hash functions (Lecture 15).
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From hash

Bit Commitment Using Hash Functions
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From hash

Bit commitment from a hash function
The analogy between bit commitment and hash functions described
above suggests a bit commitment scheme based on hash functions.

Alice Bob

To commit(b):
1.

r1←− Choose random string r1.
2. Choose random string r2.

Compute c = H(r1r2b).
c−→ c is commitment.

To open(c):

3. Send r2.
r2−→ Find b′ ∈ {0, 1} such that

c = H(r1r2b′).
If no such b′, then fail.
Otherwise, b′ is revealed bit.
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From hash

Purpose of r2

The purpose of r2 is to protect Alice’s secret bit b.

To find b before Alice opens the commitment, Bob would have to
find r ′2 and b′ such that H(r1r ′2b′) = c .

This is akin to the problem of inverting H and is likely to be hard,
although the one-way property for H is not strong enough to imply
this.

On the one hand, if Bob succeeds in finding such r ′2 and b′, he has
indeed inverted H, but he does so only with the help of r1 —
information that is not generally available when attempting to
invert H.

CPSC 467b, Lecture 19 38/47



Outline Secret splitting Shamir’s scheme Bit commitment

From hash

Purpose of r1

The purpose of r1 is to strengthen the protection that Bob gets
from the hash properties of H.

Even without r1, the strong collision-free property of H would
imply that Alice cannot find c , r2, and r ′2 such that
H(r20) = c = H(r ′21).

But by using r1, Alice would have to find a new colliding pair for
each run of the protocol.

This protects Bob by preventing Alice from exploiting a few
colliding pairs for H that she might happen to discover.
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From PRSG

Bit Commitment Using Pseudorandom

Sequence Generators
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From PRSG

Bit commitment using a PRSG
Let Gρ(s) be the first ρ bits of G (s). (ρ is a security parameter.)

Alice Bob

To commit(b):
1.

r←− Choose random r ∈ {0, 1}ρ.
2. Choose random seed s.

Let y = Gρ(s).
If b = 0 let c = y .

If b = 1 let c = y ⊕ r .
c−→ c is commitment.

To open(c):

3. Send s.
s−→ Let y = Gρ(s).

If c = y then reveal 0.
If c = y ⊕ r then reveal 1.
Otherwise, fail.
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From PRSG

Security of PRSG bit commitment

Assuming G is cryptographically strong, then c will look random to
Bob, regardless of the value of b, so he will be unable to get any
information about b.

Why?Assume Bob has advantage ε at guessing b when he can choose x
and is given c . Here’s a judge J for distinguishing G (S) from U.

I Given input y , J chooses random b and simulates Bob’s
cheating algorithm. J simulates Bob choosing r , computes
c = y ⊕ rb, and continues Bob’s algorithm to find a guess b̂
for b.

I If b̂ = b, J outputs 1.

I If b̂ 6= b, J outputs 0.
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From PRSG

The judge’s advantage

If y is drawn at random from U, then c is uniformly distributed
and independent of b, so J outputs 1 with probability 1/2.

If y comes from G (S), then J outputs 1 with the same probability
that Bob can correctly guess b.

Assuming G is cryptographically strong, then Bob has negligible
advantage at guessing b.
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From PRSG

Purpose of r

The purpose of r is to protect Bob against a cheating Alice.

Alice can cheat if she can find a triple (c, s0, s1) such that s0 opens
c to reveal 0 and s1 opens c to reveal 1.

Such a triple must satisfy the following pair of equations:

c = Gρ(s0)
c = Gρ(s1)⊕ r .

}
It is sufficient for her to solve the equation

r = Gρ(s0)⊕ Gρ(s1)

for s0 and s1 and then choose c = Gρ(s0).
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From PRSG

How big does ρ need to be?
We now count the number of values of r for which the equation

r = Gρ(s0)⊕ Gρ(s1)
has a solution.

Suppose n is the seed length, so the number of seeds is ≤ 2n.
Then the right side of the equation can assume at most 22n/2
distinct values.

Among the 2ρ possible values for r , only 22n−1 of them have the
possibility of a colliding triple, regardless of whether or not Alice
can feasibly find it.

Hence, by choosing ρ sufficiently much larger than 2n − 1, the
probability of Alice cheating can be made arbitrarily small.

For example, if ρ = 2n + 19 then her probability of successful
cheating is at most 2−20.

CPSC 467b, Lecture 19 45/47



Outline Secret splitting Shamir’s scheme Bit commitment

From PRSG

Why does Bob need to choose r?

Why can’t Alice choose r , or why can’t r be fixed to some
constant?

If Alice chooses r , then she can easily solve r = Gρ(s0)⊕ Gρ(s1)
and cheat.

If r is fixed to a constant, then if Alice ever finds a colliding triple
(c , s0, s1), she can fool Bob every time.

While finding such a pair would be difficult if Gρ were a truly
random function, any specific PRSG might have special properties,
at least for a few seeds, that would make this possible.
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From PRSG

Example

For example, suppose r = 1ρ and Gρ(¬s0) = ¬Gρ(s0) for some s0.

Then taking s1 = ¬s0 gives
Gρ(s0)⊕Gρ(s1) = Gρ(s0)⊕Gρ(¬s0) = Gρ(s0)⊕¬Gρ(s0) = 1ρ = r .

By having Bob choose r at random, r will be different each time
(with very high probability).

A successful cheating Alice would be forced to solve
r = Gρ(s0)⊕ Gρ(s1) in general, not just for one special case.
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