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Formalization of Bit Commitment Schemes
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Formalization of bit commitment schemes

The three bit commitment protocols presented last time all have
the same form.

We abstract from these protocols a cryptographic primitive, called
a bit commitment scheme, which consists of a pair of key spaces
K4 and Kpg, a blob space B, a commitment function

enclose : K4 x K x {0,1} — B,
and an opening function
reveal : K4 x Kg x B — {0,1, ¢},

where ¢ means “failure”.

We say that a blob ¢ € B contains b € {0,1} if
reveal(ka, kg, c) = b for some ka € K4 and kg € Kp.
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Desired properties

These functions have three properties:
1. Vkp € Ka,Vkg € Kg,Vb € {0, 1},
reveal(ka, kg, enclose(ka, kg, b)) = b;
2. Vkg € Kg,Vc e B,3b € {0, 1},VkA € Ka,
reveal(ka, kg, c) € {b, ¢}.
3. No feasible probabilistic algorithm that attempts to distinguish

blobs containing 0 from those containing 1, given kg and c, is
correct with probability significantly greater than 1/2.
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Intuition

The intention is that k4 is chosen by Alice and kg by Bob.
Intuitively, these conditions say:

1. Any bit b can be committed using any key pair ka, kg, and
the same key pair will open the blob to reveal b.

2. For each kg, all ks that successfully open c¢ reveal the same
bit.
3. Without knowing kja, the blob does not reveal any significant

amount of information about the bit it contains, even when
kg is known.
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Comparison with symmetric cryptosystem

A bit commitment scheme looks a lot like a symmetric
cryptosystem, with enclose(ka, kg, b) playing the role of the
encryption function and reveal(ka, kg, c) the role of the
decryption function.

However, they differ both in their properties and in the
environments in which they are used.

Conventional cryptosystems do not require uniqueness condition 2,
nor do they necessarily satisfy it.
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Comparison with symmetric cryptosystem (cont.)

In a conventional cryptosystem, we assume that Alice and Bob
trust each other and both share a secret key k.

The cryptosystem is designed to protect Alice's secret message
from a passive eavesdropper Eve.

In a bit commitment scheme, Alice and Bob cooperate in the
protocol but do not trust each other to choose the key.

Rather, the key is split into two pieces, ks and kg, with each
participant controlling one piece.

CPSC 467b, Lecture 20 8/51

00




Outline Formalization Coin-Flipping Locked Box Oblivious Transfer
00000000000000000000000000

A bit-commitment protocol from a bit-commitment scheme

A bit commitment scheme can be turned into a bit commitment
protocol by plugging it into the generic protocol

Alice Bob

To commit(b):

k
1. <2 Choose random kg € Kg.
2. Choose random ka € ICy4.
c = enclose(ky, kg, b). — ¢ is commitment.

To open(c):

3. Send kj. a, Compute b = reveal(ka, kg, ¢).
If b= ¢, then fail.
If b # ¢, then b is revealed bit.

| |
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The previous bit commitment protocols we have presented can all
be regarded as instances of the generic protocol.

For example, we get the second protocol based on symmetric
cryptography by taking

enclose(ka, kg, b) = Ex, (ks - b),

and
b if kB-b: DkA(C)

reveal(ka, kg, ) :{ ¢ otherwise.
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Coin-Flipping

CPSC 467b, Lecture 20 11/51
00




Outline Formalization Coin-Flipping Locked Box Oblivious Transfer
00000000000000000000000000

Flipping a common coin

Alice and Bob are in the process of getting divorced and are trying
to decide who gets custody of their pet cat, Fluffy.

They both want the cat, so they agree to decide by flipping a coin:
heads Alice wins; tails Bob wins.

Bob has already moved out and does not wish to be in the same
room with Alice.

The feeling is mutual, so Alice proposes that she flip the coin and
telephone Bob with the result.

This proposal of course is not acceptable to Bob since he has no
way of knowing whether Alice is telling the truth when she says
that the coin landed heads.
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Making it fair

“Look Alice,” he says, “to be fair, we both have to be involved in
flipping the coin.”

“We'll each flip a private coin and XOR our two coins together to
determine who gets Fluffy.”

“You should be happy with this arrangement since even if you
don't trust me to flip fairly, your own fair coin is sufficient to
ensure that the XOR is unbiased.”

:
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A proposed protocol

This sounds reasonable to Alice, so she lets him propose the
protocol below, where 1 means “heads” and 0 means “tails”.

Alice Bob
1. Choose random bit
ba € {0,1} ba,
2. Choose random bit
L pgefo,1}.
3. Coin outcome is Coin outcome is
b=bsD bp. b= bsD bg.

Alice considers this for awhile, then objects.

“This isn't fair. You get to see my coin before | see yours,
so now you have complete control over the outcome.”
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Alice’s counter proposal

She suggests that she would be happy if the first two steps were
reversed, so that Bob flips his coin first, but Bob balks at that
suggestion.

They then both remember Lecture 19 and decide to use blobs to
prevent either party from controlling the outcome. They agree on
the following protocol.
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A mutually acceptable protocol

Alice Bob

1. Choose random ka, sa € Ka. Lanks Choose random kg, sg € K5.

2. Choose random bit ba € {0, 1}. Choose random bit bg € {0, 1}.
ca = enclose(sa, kg, ba). LB g = enclose(sg, ka, bg).

3. Send sp. A%, Send sg.

4. bB = reveal(sB, kA, CB). bA = reveal(sA, kB, CA).
Coin outcome is b = bsy @ bg. Coin outcome is b = by @ bg.

At the completion of step 2, both Alice and Bob have each others
commitment (something they failed to achieve in the past, which is
why they're in the middle of a divorce now), but neither knows the
other’s private bit.

They learn each other’s bit at the completion of steps 3 and 4.
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Remaining asymmetry

While this protocol appears to be completely symmetric, it really
isn't quite, for one of the parties completes step 3 before the other
one does.

Say Alice receives sg before sending sa.

At that point, she can compute bg and hence know the coin
outcome b.

If it turns out that she lost, she might decide to stop the protocol
and refuse to complete her part of step 3.
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Premature termination

What happens if one party quits in the middle or detects the other
party cheating?

So far, we've only considered the possibility of undetected cheating.

But in any real situation, one party might feel that he or she
stands to gain by cheating, even if the cheating is detected.
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Responses to cheating

Detected cheating raises complicated questions as to what happens
next.

» Does a third party Carol become involved?

» If so, can Bob prove to Carol that Alice cheated?

» What if Alice refuses to talk to Carol?
Think about Bob's recourse in similar real-life situations and
consider the reasons why such situations rarely arise.
For example, what happens if someone

» fails to follow the provisions of a contract?

» ignores a summons to appear in court?
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A copycat attack

There is a subtle problem with the previous coin-flipping protocol.

Suppose Bob sends his message before Alice sends hers in each of
steps 1, 2, and 3.

Then Alice can choose kg = kg, ca = cg, and sy = sg rather than
following her proper protocol, so

reveal(sa, kg, ca) = reveal(sg, ka, cg).

In step 4, Bob will compute by = by and won't detect that
anything is wrong. The coin outcome is b = by ® by = 0.

Hence, Alice can force outcome 0 simply by playing copycat.

: :
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Preventing a copycat attack
This problem is not so easy to overcome.

One possibility is for both Alice and Bob to check that ka4 # kg
after step 1.

That way, if Alice, say, chooses c4 = cg = ¢ and sp = sg = s on
steps 2 and 3, there still might be a good chance that

ba = reveal(s, kg, c) # reveal(s, ka, c) = bg.

However, depending on the bit commitment scheme, a difference
in only one bit in k4 and kg might not be enough to ensure that
different bits are revealed.

In any case, it's not enough that by and bg sometimes differ.
For the outcome to be unbiased, we need Pr[ba # bp| = 1/2.

: :
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A better idea

A better idea might be to both check that k4 # kg after step 1 and
then to use h(ka) and h(kg) in place of ka and kg, respectively, in
the remainder of the protocol, where h is a hash function.

That way, even a single bit difference in k4 and kg is likely to be
magnified to a large difference in the strings h(ka) and h(kg).

This should lead to the bits reveal(sa, h(kg), ca) and
reveal(sg, h(ka), cg) being uncorrelated, even if sy = sg and
CA = CB.
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Locked Box Paradigm
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Overview

Overview

Protocols for coin flipping and for dealing a poker hand from a
deck of cards can be based on the intuitive notion of locked boxes.

This idea in turn can be implemented using commutative-key
cryptosystems.

We first present a coin-flipping protocol using locked boxes.
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Application

Preparing the boxes

Imagine two sturdy boxes with hinged lids that can be locked with
a padlock.

Alice writes "heads” on a slip of paper and “tails” on another.

“heads"”, signed Alice| | “tails”, signed Alice

She places one of these slips in each box.

:
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Alice locks the boxes

Alice puts a padlock on each box for which she holds the only key.

She then gives both locked boxes to Bob, in some random order.
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Bob adds his lock

Bob cannot open the boxes and does not know which box contains
“heads” and which contains “tails”.

He chooses one of the boxes and locks it with his own padlock, for
which he has the only key.

He gives the doubly-locked box back to Alice.

: :
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Alice removes her lock

Alice gets

She removes her lock.

and returns the box to Bob.
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Bob opens the box
Bob gets

He removes his lock

opens the box, and removes the slip of paper from inside.

“heads”, signed Alice

He gives the slip to Alice.

: :
CPSC 467b, Lecture 20 29/51




Outline Formalization Coin-Flipping Locked Box Oblivious Transfer
000000@0000000000000000000
: |
Application
: ’

Alice checks that Bob didn't cheat

At this point, both Alice and Bob know the outcome of the coin
toss.

Alice verifies that the slip of paper is one of the two that she
prepared at the beginning, with her handwriting on it.

She sends her key to Bob.

| |
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Bob check that Alice didn't cheat
Bob still has the other box.

He removes Alice's lock,

opens the box, and removes the slip of paper from inside.

“tails”, signed Alice

He checks that it contains the other coin value.
: :
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Implementation

Implementation
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Commutative-key cryptosystems

Alice and Bob can carry out this protocol electronically using any
commutative-key cryptosystem, that is, one in which
EA 9] EB = EB o EA.l

RSA is commutative for keys A and B with a common modulus n,
so we can use RSA in an unconventional way.

Rather than making the encryption exponent public and keeping
the factorization of n private, we turn things around.

!Recall the related notion of “commutative cryptosystem” of Lecture 14 in
which the encryption and decryption functions for the same key commuted.
: :
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RSA as a commutative-key cryptosystem

Alice and Bob jointly chose primes p and g, and both compute
n = pq.

Alice chooses an RSA key pair A = ((ea, n), (da, n)), which she
can do since she knows the factorization of n.

Similarly, Bob chooses an RSA key pair B = ((eg, n), (dg, n))
using the same n.

Alice and Bob both keep their key pairs private (until the end of
the protocol, when they reveal them to each other to verify that
there was no cheating).

: :
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Implementation
; ;

Security remark

We note that this scheme may have completely different security
properties from usual RSA.

In RSA, there are three different secrets involved with the key: the
factorization of n, the encryption exponent e, and the decryption
exponent d.

We have seen previously that knowing n and any two of these
three pieces of information allows the third to be reconstructed.

Thus, knowing the factorization of n and e lets one compute d.
We also showed in Lecture 9 how to factor n given both e and d.

The way RSA is usually used, only e is public, and it is believed to
be hard to find the other two secrets.

| |
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A new use for RSA

Here we propose making the factorization of n public but keeping e
and d private.

It may indeed be hard to find e and d, even knowing the
factorization of n, but if it is, that fact is not going to follow from
the difficulty of factoring n.

Of course, for security, we need more than just that it is hard to
find e and d.

We also need it to be hard to find m given ¢ = m® mod n.

This is reminiscent of the discrete log problem, but of course n is
not prime in this case.

|
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Implementation
:

Coin-flipping using commutative-key cryptosystems

We now implement the locked box protocol using RSA.

Here we assume that Alice and Bob initially know large primes p
and q.

In step (2), Alice chooses a random number r such that
r<(n-1)/2.

This ensures that mg and mq are both in Z,,.

Note that i and r can be efficiently recovered from m; since i is
just the low-order bit of m; and r = (m; — i)/2.
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Implementation
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Alice Bob
1. | Choose RSA key pair A with mod- Choose RSA key pair B with
ulus n = pq. modulus n = pq.
2. | Choose random r € Z(,_y) 2.
Let m; = 2r + i, for i € {0, 1}.
Let ¢; = Ea(m;) for i € {0,1}.
Let C = {c, 1} £, Choose c, e C.
3. S et Cap = EB(Ca).
4. | Let cp = Da(cap). <
5. Let m = Dg(cp).
Let i = m mod 2.
Let r = (m—1i)/2.
If i =0 then “tails".
If i =1 then "heads”.
B

| |
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Implementation

Alice Bob

6. | Let m= DB(Cb).

Check m € {mg, m1}.

If m= mg then "tails".
If m = m then "heads”.

7. Let ¢, = C — {ca}.

Let m" = Da(c)).

Let // = m’ mod 2.

Let r' = (m —i")/2.
Check i’ #iand r' = r.
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Implementation

Correctness when Alice and Bob are honest

When both Alice and Bob are honest, Bob computes
Cap = EB(EA(mJ-)) for some j € {0, 1}.

In step 4, Alice computes cp.
By the commutativity of E4 and Eg,

cb = Da(Eg(Ea(m;))) = Eg(my;).

Hence, in step 5, m = mj is one of Alice's strings from step 2.

:
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Implementation
; ;

A dishonest Bob
A dishonest Bob can control the outcome of the coin toss if he can
find two keys B and B’ such that Eg(c,) = Ep/(cl), where
C = {ca, cl} is the set received from Alice in step 2.

In this case, c,p = Eg(Ea(mj)) = Eg/(Ea(mi—j)) for some j. Then
in step 4, ¢, = DA(Cab) = EB(mj) = EB’(ml—j)-

Hence, m; = Dg(cp) and my_; = Dp/(cp), so Bob can obtain both
of Alice’s messages and then send B or B’ in step 5 to force the
outcome to be as he pleases.

To find such B and B’, Bob would need to solve the equation

ct = c;e/ (mod n)

for e and €’. Not clear how to do this, even knowing the
factorization of n.

: :
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Card dealing using locked boxes

The same locked box paradigm can be used for dealing a 5-card
poker hand from a deck of cards.

Alice takes a deck of cards, places each card in a separate box, and
locks each box with her lock.

She arranges the boxes in random order and ships them off to Bob.
Bob picks five boxes, locks each with his lock, and send them back.

Alice removes her locks from those five boxes and returns them to
Bob.

Bob unlocks them and obtains the five cards of his poker hand.

Further details are left to the reader.
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Oblivious Transfer
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Locked-box protocol revisited

In the locked box coin-flipping protocol, Alice has two messages
mo and my.

Bob gets one of them.

Alice doesn’t know which (until Bob tells her).
Bob can’t cheat to get both messages.

Alice can't cheat to learn which message Bob got.

The oblivious transfer problem abstracts these properties from
particular applications such as coin flipping and card dealing,

:
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Oblivious Transfer of One Secret
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Oblivious transfer of one secret

Alice has a secret s.

An oblivious transfer protocol has two equally-likely outcomes:
1. Bob learns s.
2. Bob learns nothing.

Afterwards, Alice doesn’t know whether or not Bob learned s.
A cheating Bob can do nothing to increase his chance of getting s.

A cheating Alice can do nothing to learn whether or not Bob got
her secret.

Rabin proposed an oblivious transfer protocol based on quadratic
residuosity in the early 1980's.
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Rabin’'s OT protocol

Alice Bob

1. | Secret s.

n=pq, p# q prime.
RSA public key (e, n). (eme)
Compute ¢ = E(c (). ons

Choose random x € Z.
<2~ Compute a = x?> mod n.

3. | Check a € QR,,.

Random y € v/a (mod n). %

4. Check y2 = a (mod n).

If y £ £x (mod n), use x, y to

factor n and decrypt ¢ to obtain
s.
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Analysis

Alice can can carry out step 3 since she knows the factorization of
n and can find all four square roots of a.

However, Alice has no idea which x Bob used to generate a.

Hence, with probability 1/2, y = +x (mod n) and with probability
1/2, y # £x (mod n).

If y # £x (mod n), then the two factors of n are ged(x — y, n)
and n/ ged(x — y, n), so Bob factors n and decrypts c in step 4.

However, if y = +x (mod n), Bob learns nothing, and Alice’s
secret is as secure as RSA itself.
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A potential problem

There is a potential problem with this protocol.

A cheating Bob in step 2 might send a number a which he
generated by some means other than squaring a random x.

In this case, he always learns something new no matter which
square root Alice sends him in step 3.

Perhaps that information, together with what he already learned in
the course of generating a, is enough for him to factor n.
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Is this a real problem?

We don't know of any method by which Bob can find a quadratic
residue a (mod n) without also knowing one of a's square roots.

We certainly don’t know of any method that would produce a
quadratic residue a together with some other information = that,
combined with a square root y, would allow Bob to factor n.

But we also cannot prove that no such method exists.
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A modified protocol

We fix this problem by having Bob prove that he knows a square
root of the number a that he sends Alice in step 2.

He does this using a zero knowledge proof of knowledge of a
square root of a.

This is essentially what the simplified Feige-Fiat-Shamir protocol of
Lecture 16 does, but with the roles of Alice and Bob reversed.

» Bob claims to know a square root x of the public number a.
» He wants to prove to Alice that he knows x, but he does not
want Alice to get any information about x.

» If Alice were to learn x, then she could choose y = x and
eliminate Bob’s chance of learning s while still appearing to
play honestly.

: :
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