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Review: digital signatures

Asymmetric digital signatures

Recall our formal definition of an asymmetric signature scheme.

Let M be a message space and S a signature space.

A signature scheme consists of a private signing key d , a public
verification key e, a signature function Sd :M→ S, and a
verification predicate Ve ⊆M×S.1

A signed message is a pair (m, s) ∈M× S. A signed message is
valid if Ve(m, s) is true, and we say that (m, s) is signed with e.

1As with RSA, we denote the private component of the key pair by the
letter d and the public component by the letter e, although they no longer
have same mnemonic significance.
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Review: digital signatures

Fundamental property of a signature scheme

Basic requirement:

The signing function always produces a valid signature, that is,

Ve(m,Sd(m)) (1)

is true for all m ∈M.
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Review: digital signatures

Signing message digests

The usual way to use a digital signature scheme such as RSA is to
sign a digest of the message rather than sign m itself.

A message digest function h, also called a cryptographic hash
function or a fingerprint function, maps long strings to short
random-looking strings.

I To sign a message m, Alice computes Sd(m) = Dd(h(m)).

I To verify the signature s, Bob checks that h(m) = Ee(s).
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Signed encrypted messages

Signed encrypted messages
One often wants to encrypt messages for privacy and sign them for
integrity and authenticity.

Let Alice have cryptosystem (E ,D) and signature system (S ,V ).
Some possibilities for encrypting and signing a message m:

1. Alice signs the encrypted message and sends the pair
(E (m),S(E (m))).

2. Alice encrypts the signed message and sends the result
E (m ◦ S(m)). Here we assume a standard way of representing
the ordered pair (m,S(m)) as a string, which we denote by
m ◦ S(m).

3. Alice separately encrypts and signs message and sends the
pair (E (m), S(m)).
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Signed encrypted messages

Weakness of encrypt-and-sign

Note that method 3, sending the pair (E (m),S(m)), is quite
problematic since signature functions make no guarantee of privacy.

We can construct a signature scheme (S ′,V ′) in which the
plaintext message is part of the signature itself.

If (S ′,V ′) is used as the signature scheme in method 3, there is no
privacy, for the plaintext message can be read directly from the
signature.
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Signed encrypted messages

A forgery-resistant signature scheme with no privacy

Example: Let (S ,V ) be an RSA signature scheme. Define

S ′(m) = m ◦ S(m) ;

V ′(m, s) = ∃t(s = m ◦ t ∧ V (m, t)) .

Fact
(S ′,V ′) is at least as secure as (S ,V ).

Why? Suppose a forger produces a valid signed message (m, s) in
(S ′,V ′), so s = m ◦ t for some t and V (m, t) holds..

Then (m, t) is a valid signed message in (S ,V ).
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Signed encrypted messages

Encrypt first

Recall method 1 (encrypt first): (E(m), S(E(m))).

This allows Eve to verify that the signed message was sent by
Alice, even though Eve cannot read it.

Whether or not this property is desirable is application-dependent.

More importantly, if a signature scheme such as RSA is used that
allows forging valid signed random messages, then Mallory could
forge a ciphertext c with Alice’s valid signature s.

Bob, believing c is valid, might proceed to decrypt c and act on
the resulting message m.
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Signed encrypted messages

Sign first

Recall method 2 (sign first): E (m ◦ S(m)).

This forces Bob to decrypt a bogus message before discovering
that it wasn’t sent by Alice.

This method also fails if Mallory can forge a valid signed random
message (m, s), for Mallory can proceed to encrypt m ◦ s (using
Bob’s public encryption key) and the result looks like it was
produced by Alice.
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Signed encrypted messages

Combining protocols

Subtleties emerge when cryptographic protocols are combined,
even in a simple case like this where it is only desired to combine
privacy with authentication.

Think about the pros and cons of other possibilities, such as
sign-encrypt-sign, i.e., (E (m ◦ S(m)),S(E (m ◦ S(m)))).

Does it also fail with forged random signed messages?
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Practical Signature Algorithms
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Digital signature algorithm (DSA)

Digital signature standard

The commonly-used Digital Signature Algorithm (DSA) is a
variant of ElGamal signatures. Also called the Digital Signature
Standard (DSS), it is described in U.S. Federal Information
Processing Standard FIPS 186–3.2.

It uses two primes: p, which is 1024 bits long,3 and q, which is 160
bits long and satisfies q |(p − 1). Here’s how to find them: Choose
q first, then search for z such that zq + 1 is prime and of the right
length. Choose p = zq + 1 for such a z .

2Available at http://csrc.nist.gov/publications/fips/fips186-3/fips 186-3.pdf
3The original standard specified that the length L of p should be a multiple

of 64 lying between 512 and 1024, and the length N of q should be 160.
Revision 2, Change Notice 1 increased L to 1024. Revision 3 allows four (L,N)
pairs: (1024, 160), (2048, 224), (2048, 256), (3072, 256).

CPSC 467, Lecture 13 14/41

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf


Outline Using Digital Signatures Practical Signatures Special Signatures

Digital signature algorithm (DSA)

DSA key generation

Given primes p and q of the right lengths such that q |(p − 1),
here’s how to generate a DSA key.

I Let g = h(p−1)/q mod p for any h ∈ Z∗p for which g > 1.

This ensures that g ∈ Z∗p is a non-trivial qth root of unity
modulo p.

I Let x ∈ Z∗q.

I Let a = g x mod p.

Private signing key: (p, q, g , x).

Public verification key: (p, q, g , a).
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Digital signature algorithm (DSA)

DSA signing and verification
Here’s how signing and verification work:

To sign m:
1. Choose random y ∈ Z∗q.
2. Compute b = (g y mod p) mod q.
3. Compute c = (m + xb)y−1 mod q.
4. Output signature s = (b, c).

To verify (m, s), where s = (b, c):
1. Verify that b, c ∈ Z∗q; reject if not.
2. Compute u1 = mc−1 mod q.
3. Compute u2 = bc−1 mod q.
4. Compute v = (gu1au2 mod p) mod q.
5. Check v = b.
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Digital signature algorithm (DSA)

Why DSA works

To see why this works, note that since gq ≡ 1 (mod p), then

r ≡ s (mod q) implies g r ≡ g s (mod p).

This follows from the fact that g is a qth root of unity modulo p,
so g r+uq ≡ g r (gq)u ≡ g r (mod p) for any u.
Hence,

gu1au2 ≡ gmc−1+xbc−1 ≡ g y (mod p). (2)

gu1au2 mod p = g y mod p (3)

v = (gu1au2 mod p) mod q = (g y mod p) mod q = b

as desired. (Notice the shift between equivalence modulo p in
equation 2 and equality of remainders modulo p in equation 3.)
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Digital signature algorithm (DSA)

Double remaindering

DSA uses the technique of computing a number modulo p and
then modulo q.

Call this function fp,q(n) = (n mod p) mod q.

fp,q(n) is not the same as n mod r for any modulus r , nor is it the
same as fq,p(n) = (n mod q) mod p.
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Digital signature algorithm (DSA)

Example mod 29 mod 7
To understand better what’s going on, let’s look at an example.
Take p = 29 and q = 7. Then 7|(29− 1), so this is a valid DSA
prime pair. The table below lists the first 29 values of y = f29,7(n):

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
y 0 1 2 3 4 5 6 0 1 2 3 4 5 6

n 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

y 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0

The sequence of function values repeats after this point with a
period of length 29. Note that it both begins and ends with 0, so
there is a double 0 every 29 values. That behavior cannot occur
modulo any number r . That behavior is also different from
f7,29(n), which is equal to n mod 7 and has period 7. (Why?)
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Common hash functions

Common hash function

Many cryptographic hash functions are currently in use.

For example, the openssl library includes implementations of MD2,
MD4, MD5, MDC2, RIPEMD, SHA, SHA–1, SHA–256, SHA–384,
and SHA–512.

The SHA–xxx methods are recommended for new applications, but
these other functions are also in widespread use.
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Common hash functions

SHA-1

The revised Secure Hash Algorithm (SHA–1) is one of five
algorithms described in U. S. Federal Information Processing
Standard FIPS PUB 180–4 (Secure Hash Standard).4 It states,

“Secure hash algorithms are typically used with other
cryptographic algorithms, such as digital signature
algorithms and keyed-hash message authentication codes,
or in the generation of random numbers (bits).”

SHA–1 produces a 160-bit message digest. The other algorithms in
the SHA–xxx family produce longer message digests.

4Available at http://csrc.nist.gov/publications/fips/fips180-4/
fips-180-4.pdf.

CPSC 467, Lecture 13 21/41

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf


Outline Using Digital Signatures Practical Signatures Special Signatures

Common hash functions

SHA-1 broken

SHA-1 was broken in 2005 by Xiaoyun Wang, Yiqun Lisa Yin, and
Hongbo Yu: “Finding Collisions in the Full SHA-1”. CRYPTO
2005: 17-36. Wang and Yu did their work at Shandong University;
Yin is listed on the paper as an independent security consultant in
Greenwich, CT.

On Nov. 2, 2007, NIST announced a public competition for a
replacement algorithm to be known as SHA-3.

The winner, an algorithm named Keccak, was announced on
October 2, 2012. It is currently in the process of standardization.5

5See http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
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MD5

MD5 overview
MD5 is an older algorithm (1992) devised by Rivest. We present
an overview of it here.

It generates a 128-bit message digest from an input message of
any length. It is built from a basic block function

g : 128-bit× 512-bit→ 128-bit.

The MD5 hash function h is obtained as follows:

I The original message is padded to length a multiple of 512.

I The result m is split into a sequence of 512-bit blocks
m1,m2, . . . ,mk .

I h is computed by chaining g on the first argument.

We next look at these steps in greater detail.
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MD5

MD5 padding

As with block encryption, it is important that the padding function
be one-to-one, but for a different reason.

For encryption, the one-to-one property is what allows unique
decryption.

For a hash function, it prevents there from being trivial colliding
pairs.

For example, if the last partial block is simply padded with 0’s,
then all prefixes of the last message block will become the same
after padding and will therefore collide with each other.
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MD5

MD5 chaining

The function h can be regarded as a state machine, where the
states are 128-bit strings and the inputs to the machine are 512-bit
blocks.

The machine starts in state s0, specified by an initialization vector
IV.

Each input block mi takes the machine from state si−1 to new
state si = g(si−1,mi ).

The last state sk is the output of h, that is,

h(m1m2 . . .mk−1mk) = g(g(. . . g(g(IV ,m1),m2) . . . ,mk−1),mk).
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MD5

MD5 block function

The block function g(s, b) is built from a scrambling function
g ′(s, b) that regards s and b as sequences of 32-bit words and
returns four 32-bit words as its result.

Suppose s = s1s2s3s4 and g ′(s, b) = s ′1s ′2s ′3s ′4.

We define

g(s, b) = (s1 + s ′1) · (s2 + s ′2) · (s3 + s ′3) · (s4 + s ′4),

where “+” means addition modulo 232 and “·” is concatenation of
the representations of integers as 32-bit binary strings.
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MD5

MD5 scrambling function

The computation of the scrambling function g ′(s, b) consists of 4
stages, each consisting of 16 substages.

We divide the 512-bit block b into 32-bit words b1b2 . . . b16.

Each of the 16 substages of stage i uses one of the 32-bit words of
b, but the order they are used is defined by a permutation πi that
depends on i .

In particular, substage j of stage i uses word b`, where ` = πi (j) to
update the state vector s.

The new state is fi ,j(s, b`), where fi ,j is a bit-scrambling function
that depends on i and j .
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MD5

Further remarks on MD5

We omit further details of the bit-scrambling functions fi ,j ,

However, note that the state s can be represented by four 32-bit
words, so the arguments to fi ,j occupy only 5 machine words.
These easily fit into the high-speed registers of modern processors.

The definitive specification for MD5 is RFC1321 and errata. A
general discussion of MD5 along with links to recent work and
security issues can be found on Wikipedia.

Although MD5 is widely used, recent attacks by Xiaoyun Wang
and Hongbo Yu show that it is not collision resistant and hence no
longer suitable for most cryptographic uses.
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Digital Signatures with Special Properties
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Blind signatures

Electronic voting

Voting involves several parties and steps:

I The election authority issues a ballot.

I The voter marks and submits the ballot.

I The election authority counts the valid ballots.

Security requirements:

1. Marked ballot should remain secret and not linked to voter.

2. All counted ballots should be genuine.

CPSC 467, Lecture 13 30/41



Outline Using Digital Signatures Practical Signatures Special Signatures

Blind signatures

Validating ballots

To assure that only valid ballots are counted, the election authority
can sign each ballot. However, there is a problem.

I If all blank ballots are identical, then they can be duplicated,
allowing the voter to vote multiple times.

I If each ballot is unique (say by having a serial number), then
the marked ballot can be linked to the voter, violating voter
privacy.
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Blind signatures

Blind signatures

Blind signatures allow the unlinking of a message content from the
signer. Here’s how it works:

1. Vi takes a blank ballot, marks her choices, and then encrypts
the marked ballot b with a secret random blinding factor r .

2. The election authority validates the blinded ballot b′ with a
signature s ′.

3. Vi removes the blinding factor to get a valid signature s for b
and anonymously submits (b, s).

Since only Vi knows r , the election authority cannot link b′ with b,
so her vote remains secret.

Still, multiple voting is prevented since invalid ballots will not be
counted, and the election authority will only sign one ballot for Vi.
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Blind signatures

RSA blind signatures
Assume Sam uses an RSA signature scheme with modulus n,
private signing key d , and public verification key e.

Here’s how Vi and Sam can work together to produce an
unlinkable signature s for Vi’s ballot b.

1. Vi generates a random r ∈ Z∗n and computes b′ = br e mod n.
She gives b′ to Sam.

2. Sam signs b′, returning (b′, s ′) to Vi.

3. Vi computes s = s ′r−1 mod n.

Since we are using RSA signatures, s ′ = (b′)d mod n, so

s ≡ s ′r−1 ≡ (b′)d r−1 ≡ bd r ed r−1 ≡ bd (mod n).

Hence, s is a valid RSA signature for b.
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Blind signatures

Electronic cash

Blind signatures were originally proposed for electronic cash.

As with voting, the goal was to allow for anonymous electronic
cash – cash that could not be traced back to the spender.

In Chaum’s scheme, a user gets an electronic coin (ρ, s) from the
bank.

The user chooses ρ at random, and s is the bank’s RSA signature
of h(ρ) mod n, where h is a cryptographic hash function.

A coin is only valid if Ve(h(ρ), s) holds.

Blind signatures prevent the bank from linking ρ with the user.
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Blind signatures

Producing a digital coin

The bank has an RSA signature scheme with public verification key
(n, e)

1. The user generates a secret random number ρ and computes
m = h(ρ) mod n.

2. The user blinds m with a random blinding factor r and gives
m′ = mr e mod n to the bank.

3. The bank signs m′, returning s ′.

4. The user unblinds s ′ to obtain s, a valid signature of m.

5. The digital coin is the pair (ρ, s).
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Group signatures

Group signatures

A group signature allows a member of a group to anonymously
sign for the group.

For example, a bank employee might be authorized to sign for the
bank but not want his personal identity to be revealed.

A group manager adds group members and can determine the
identify of the signer.

A revocation manager revokes signature authority of group
members.
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Group signatures

Properties of group signatures

Basic properties of group signatures (from Wikipedia):

Soundness and Completeness Valid signatures by group members
always verify correctly, and invalid signatures always
fail verification.

Unforgeable Only members of the group can create valid group
signatures.

Anonymity Given a message and its signature, the identity of the
individual signer cannot be determined without the
group manager’s secret key.

Traceability Given any valid signature, the group manager should
be able to trace which user issued the signature.
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Group signatures

Properties of group signatures (cont.)

Unlinkability Given two messages and their signatures, we cannot
tell if the signatures were from the same signer or
not.

No Framing Even if all other group members (and the managers)
collude, they cannot forge a signature for a
non-participating group member.

Unforgeable tracing verification The revocation manager cannot
falsely accuse a signer of creating a signature he did
not create.
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Short signatures

Short signatures

The signature schemes we have studied all produce signatures
whose length is comparable to the parameter lengths of the
underlying cryptosystem, typically 1024 or 2048 or longer.

For many applications, it is desirable to have “short” signatures of
lengths, say, 160 or 128 bits.
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Short signatures

Applications of short signatures

Some applications6

I Electronic airline tickets.

I Serial numbers for software.

I Authorization codes.

I Electronic postage stamps.

I Electronic banking, bank notes, printed documents and
certificates.

I Signing data in smart cards and other devices with limited
storage capacity.

6From ECRYPT report D.AZTEC.7, “New Technical Trends in Asymmetric
Cryptography”.
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Aggregate signatures

Aggregate signatures

From the abstract:7

“An aggregate signature scheme is a digital signature
that supports aggregation: Given n signatures on n
distinct messages from n distinct users, it is possible to
aggregate all these signatures into a single short
signature. This single signature (and the n original
messages) will convince the verifier that the n users did
indeed sign the n original messages (i.e., user i signed
message Mi for i = 1, . . . , n).”

7“Aggregate and Verifiably Encrypted Signatures from Bilinear Maps” by D.
Boneh, C. Gentry, H. Shacham, and B. Lynn, Eurocrypt 2003, LNCS, 2656,
416–432.
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