YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467: Cryptography and Computer Security Handout #10
Professor M. J. Fischer November 6, 2013

Problem Set 5

Due on Wednesday, November 13, 2013.

Instructions

Work the problems below, prepare your answers in electronic form, and submit your solutions
using the submit script on the Zoo. Remember to specify “5” for the problem number argument
to submit.

Problem 1 requires some computation. You may use a calculator or computer for the calcula-
tions, but you must show your work.

Problem 3 is a small programming problem that must be solved on the Zoo since it uses a
pre-compiled library that I am furnishing.
Problem 1: Quadratic Residues and the Legendre Symbol

(a) Letp =19,¢ =37,andn = p x ¢ = 703. Foreach 4, j € {—1,1}, find a number z; ; € Z,

such that
(%) =1 and (x”) = 7.
b q

(b) Use the Euler criterion to justify your answers to part (al).

Problem 2: ElGamal Authentication

Once Happy understood ElGamal signatures, he was excited to use them for authentication. He
wants to send an authenticated message m to Bob so that Bob can verify that m came from him.

Here’s his idea. Assume that Happy has an ElGamal signing key (g, p,x) and Bob has the
corresponding verification key (g, p, a). We denote the signing algorithm using that key pair by S
and the verification algorithm by V.

Happy Bob

1.

2. Compute s = Sy(r) 25 Check Vy(r, s).
Accept m as coming from Happy if check succeeds.

Choose random string r.

ch\3

(a) Mallory wants to get Bob to accept a message m’ of his choosing. Describe in detail how he
can do this using a man-in-the-middle attack.

(b) Suggest a way to fix this protocol to thwart Happy’s attack. Your suggestion should not use
any more rounds of communication nor assume any other encryption system or secret keys.
[Hint: Think about using a secure hash function H to somehow “bind” m to the signature.]



2 Problem Set 5

Problem 3: Extending Hash Functions

Happy threw together a hash function & : 32-bits — 16-bits, which he implemented by a C function
hash32 (). Adapting Method 2 from slide 28 of Lecture 14, Happy defined a new hash function
H : 64-bits — 16-bits and implemented it by a C function hash64. Since he didn’t know how to
find colliding pairs for h, he thought that H would also be collision-free.

Clever Clem was able to find lots of colliding pairs for H. He didn’t want to tell Happy how he
did it, but he presented Happy with a file H-collisions of colliding pairs for H, each line of
which consists of two 64-bit whitespace-separated hex numbers.

Your job is to write a program breakHash. c that applies the ideas presented on slide 29 of
Lecture 14 to find a corresponding colliding pair for h. Your program should take as a command
line argument the name of a file containing pairs of collisions for H. You should read each line,
determine whether case 1 or case 2 applies, and find the corresponding colliding pair for h. You
should then write a line to standard output consisting of 5 numbers: the original colliding pair for H,
the case number that pertains (1 or 2), and the colliding pair for ~ described by that case. Colliding
pairs should be written in hex with the Ox-prefix (as in the input file). The case number should be
written as a single digit. In case 2, if both my # m/} and my # m, then print the first colliding pair
for h.

Three files for this assignment have been placed in the Zoo directory
/c/csd67/assignments/ps5/: aheader file ps5 . h containing prototypes for hash32 and
hash64, alibrary 1ibps5. a containing linux executables of those two functions, and the data
file H-collisions.


http://zoo.cs.yale.edu/classes/cs467/2013f/course/assignments/ps5/

	Quadratic Residues and the Legendre Symbol
	ElGamal Authentication
	Extending Hash Functions

