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Caesar cipher

Information-theoretic security

We have been discussing computational security – what can Eve
learn with a certain success probability in a limited amount of time.

We now turn to information-theoretic security, where we remove
the limits on Eve and just look at the question from an
information-theoretic perspective.
What information is contained in the data at Eve’s disposal?

A cryptosystem is information-theoretically secure if
Pr[m] = Pr[m | c]. Thus, c gives no information about m.

This is equivalent to saying that m and c are statistically
independent.

We also call this perfect secrecy.
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Caesar cipher

Base Caesar cipher

The Caesar cipher is said to go back to Roman times.

It encodes the 26 letters of the Roman alphabet A,B, . . . ,Z .

Assume the letters are represented as A = 0, B = 1, . . . , Z = 25.

M = C = K = {0, . . . , 25}.

Ek(m) = (m + k) mod 26

Dk(c) = (c − k) mod 26.
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Caesar cipher

Full Caesar cipher
Extend base cipher to strings by encrypting each letter separately.

For r -letter strings, we have

Mr = Cr =M×M× . . .M︸ ︷︷ ︸
r

,

that is, length-r sequences of numbers from {0, . . . , 25}. The
encryption and decryption functions are

E r
k (m1 . . .mr ) = Ek(m1) . . .Ek(mr )

Dr
k(c1 . . . cr ) = Dk(c1) . . .Dk(cr ).

Note: The key space remains the same; only the message and
ciphertext spaces have changed.
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Caesar cipher

Simplified Caesar cipher

A probabilistic analysis of the Caesar cipher.

Simplify by restricting to a 3-letter alphabet.

M = C = K = {0, 1, 2}
Ek(m) = (m + k) mod 3
Dk(m) = (m − k) mod 3.

Theorem
The simplified Caesar cipher achieves perfect secrecy.
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Caesar cipher

Joint message-key distribution

A priori message probabilities: m pm

0 1/2
1 1/3
2 1/6

Each key has probability 1/3.

Joint probability distribution:

m



k︷ ︸︸ ︷
0 1 2

0 1/6 1/6 1/6
1 1/9 1/9 1/9
2 1/18 1/18 1/18
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Caesar cipher

Conditional probability distribution

Pr[m = 1] = 1/3.
Eve sees c = 2.
She wishes to compute Pr[m = 1 | c = 2].

First, find the sample space Ω.
Points in Ω are triples (m, k , c), where c = Ek(m).:

(0,0,0)
·

(0,1,1)
·

(0,2,2)
•

(1,0,1)
·

(1,1,2)
•

(1,2,0)
·

(2,0,2)
•

(2,1,0)
·

(2,2,1)
·

Points for which c = 2 are shown in bold red.
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Caesar cipher

Proof of perfect secrecy

Pr[c = 2] is the sum of the
probabilities of the bold face
points, i.e., 1/6 + 1/9 + 1/18
= 6/18 = 1/3.

k︷ ︸︸ ︷
0 1 2

0 1/6 1/6 1/6
m

1 1/9 1/9 1/9
2 1/18 1/18 1/18

The only point for which m = 1 is (1, 1, 2) (the center point).
It’s probability is 1/9, so Pr[m = 1 ∧ c = 2] = 1/9.
By definition of conditional probability,

Pr[m = 1 | c = 2] =
Pr[m = 1 ∧ c = 2]

Pr[c = 2]
=

1/9

1/3
=

1

3
= Pr[m = 1].

Similarly, Pr[m = m0 | c = c0] = Pr[m = m0] for all m0 and c0.
Hence, simplified Caesar cipher is information-theoretically secure.
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Loss of perfection

A minor change
Suppose we reduce the key space to K = {0, 1}.
The a priori message distribution stays the same, but the joint
probability distribution changes as does the sample space.

m



k︷ ︸︸ ︷
0 1

0 1/4 1/4
1 1/6 1/6
2 1/12 1/12

(0,0,0)
·

(0,1,1)
·

(1,0,1)
·

(1,1,2)
•

(2,0,2)
•

(2,1,0)
·

Now, Pr[c = 2] = 1/6 + 1/12 = 3/12 = 1/4, and
Pr[m = 1 ∧ c = 2] = 1/6. Hence,

Pr[m = 1 | c = 2] =
1/6

1/4
=

2

3
6= 1

3
= Pr[m = 1].
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Loss of perfection

Perfect secrecy lost

The probability that m = 1 given c = 2 is double what it was.

Once Eve sees c = 2 there are only two possibilities for m:

1. m = 1 (and k = 1)

2. m = 2 (and k = 0).

No longer possible that m = 0!

Eve narrows the possibilities for m to the set M = {1, 2} ⊆ M.
Her probabilistic knowledge of m changes from the initial
distribution (1/2, 1/3, 1/6) to the new distribution (0, 2/3, 1/3).
She has learned at lot about m, even without finding it exactly.

A seemingly minor change turns a cryptosystem with perfect
secrecy into one that leaks a considerable amount of information!
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Loss of perfection

Caveats with perfect secrecy

Perfect secrecy seems like the gold standard of security.

Nevertheless, even a scheme with perfect secrecy is not without
defects and must still be used carefully.

Two problems:

I It succumbs immediately to a known plaintext attack.

I It is subject to a modification attack.
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Loss of perfection

Known plaintext attack against simplified Caesar cipher

Suppose one knows even a single plaintext-ciphertext pair (m1, c1).

One easily solves the equation

c1 = Ek(m1) = (m1 + k) mod 3

to find the key k = (c1 −m1) mod 3.

Hence, the system is completely broken.
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Loss of perfection

Man-in-the-middle attacks

An active attacker is one who can both read and alter messages en
route to their destinations.

We refer to such an attacker as “Mallory”, and we call such an
attack a man-in-the-middle attack.

In a modification attack, Mallory can modify the contents of a
message in specific semantically-meaningful ways even though he
has no idea what the message actually is.

CPSC 467, Lecture 3 15/36



Outline Perfect secrecy Classical ciphers

Loss of perfection

Modification attack against base Caesar cipher

Suppose Alice sends c to Bob. Mallory intercepts it and changes c
to (c + 5) mod 26.

Even though he doesn’t know the key and cannot read m, he
knows that he has changed m to (m + 5) mod 26.

Why? Let’s do the calculations. (All arithmetic is modulo 26).

Dk(c ′) = Dk(c + 5) = c + 5− k = Dk(c) + 5 = m + 5.

Depending on the application, this could be a devastating attack.
Suppose Alice were a financial institution that was making a direct
deposit of m thousand dollars to Mallory’s bank account at the
Bob bank. By this attack, Mallory could get an extra 5 thousand
dollars put into his account each month.
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Loss of perfection

A modification attack on English vowels

In our encoding scheme, vowels are represented by even numbers:
A = 0, E = 4, I = 8, O = 14, and U = 20. If m is a vowel, then
m′ = (m + 5) mod 26 is guaranteed not to be a vowel.

How could Mallory use this to his advantage?
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Loss of perfection

A general’s orders

I Suppose Alice is a general sending an order to a field
commander whether or not to attack.

I She uses the Caesar cipher to encrypt the order.

I A vowel means to attack; a consonent to hold the position.

I She feels very clever for encoding the attack bit in such a
non-obvious way.

I However, Mallory’s c + 5 transformation changes every
“attack” message to “don’t attack” (and some “don’t attack
messages to “attack”).

I This effectively prevents Alice from attacking when it is to her
advantage.

The fact that she was using a cryptosystem for which perfect
secrecy is known did not protect her.
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Loss of perfection

Moral

The security of a system in practice depends critically on the kinds
of attacks available to an attacker.

In this case, the cryptosystem that is provably perfectly secure
against a passive eavesdropper using a ciphertext-only attack fails
miserably against a known plaintext attack or against an active
attacker.
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One-time pad

One-time pad
The one-time pad is an information-theoretically secure
cryptosystem that works for messages of arbitrary length.

It is important because

I it is sometimes used in practice;
I it is the basis for many stream ciphers, where the truly

random key is replaced by a pseudo-random bit string.

It is based on exclusive-or (XOR), which we write as ⊕.

x ⊕ y is true when exactly one of x and y is true.
x ⊕ y is false when x and y are both true or both false.

Exclusive-or is just sum modulo two if 1 represents true and 0
represents false.

x ⊕ y = (x + y) mod 2.
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One-time pad

The one-time pad cryptosystem
M = C = K = {0, 1}r for some length r .

Ek(m) = Dk(m) = k ⊕m, where ⊕ is applied to corresponding bits
of k and m.

XOR is associative and is its own inverse. Thus,

Dk(Ek(m)) = k ⊕ (k ⊕m) = (k ⊕ k)⊕m = 0⊕m = m.

Like the base Caesar cipher, for given m and c, there is exactly one
key k such that Ek(m) = c (namely, k = m ⊕ c).

For fixed c , m varies over all possible messages as k ranges over all
possible keys, so c gives no information about m.

It follows that the one-time pad is information-theoretically secure.
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One-time pad

One-time pad in practice
The one-time pad would seem to be the perfect cryptosystem.

I It works for messages of any length (by choosing a key of the
same length).

I It is easy to encrypt and decrypt.

I It is information-theoretically secure.

In fact, it is sometimes used for highly sensitive data.

It has two major drawbacks:

1. The key k must be as long as the message to be encrypted.

2. The same key must never be used more than once. (Hence
the term “one-time”.)

Together, these make the problem of key distribution and key
management very difficult.
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One-time pad

One-time pad vulnerable to a known plaintext attack

If Eve knows just one plaintext-ciphertext pair (m1, c1), then she
can recover the key k = m1 ⊕ c1.
This allows her to decrypt all future messages sent with that key.

Even in a ciphertext-only situation, if Eve has two ciphertexts c1

and c2 encrypted by the same key k , she can gain significant
partial information about the corresponding messages m1 and m2.

In particular, she can compute m1 ⊕m2 without knowing either m1

or m2 since

m1 ⊕m2 = (c1 ⊕ k)⊕ (c2 ⊕ k) = c1 ⊕ c2.
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One-time pad

How knowing m1 ⊕m2 might help an attacker

Fact (important property of ⊕)

For bits b1 and b2, b1 ⊕ b2 = 0 if and only if b1 = b2.

Hence, blocks of 0’s in m1 ⊕m2 indicate regions where the two
messages m1 and m2 are identical.

That information, together with other information Eve might have
about the likely content of the messages, may be enough for her to
seriously compromise the secrecy of the data.
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Affine ciphers

Affine ciphers

Affine ciphers generalize simple shift ciphers such as Caesar.

Let α and β be two integers with gcd(α, 26) = 1.

A key is a pair k = (α, β).
There are 12 possible choices for α (1, 3, 5, 7, 9, 11, 15, 17, 19,
21, 23, 25) and 26 possibilites for β, so |K| = 12× 26 = 312.

Encryption: Ek(m) = αm + β mod 26.

Decryption: Dk(c) = α−1(c − β) mod 26.

Here, α−1 is the multiplicative inverse of α in the ring of integers
Z26. For example, 5−1 = 21 since 21× 5 = 105 ≡ 1 (mod 26).

α−1 exists precisely when gcd(α, 26) = 1.
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Polyalphabetic ciphers

Another way to strengthen monoalphabetic ciphers is to use
different substitutions for different letter positions.

I Choose r different alphabet permutations k1, . . . , kr for some
number r .

I Use k1 for the first letter of m, k2 for the second letter, etc.

I Repeat this sequence after every r letters.

While this is much harder to break than monoalphabetic ciphers,
letter frequency analysis can still be used.

Every r th letter is encrypted using the same permutation, so the
submessage consisting of just those letters still exhibits normal
English language letter frequencies.

CPSC 467, Lecture 3 27/36



Outline Perfect secrecy Classical ciphers

Polyalphabetic ciphers

Vigenère cipher

The Vigenère cipher is a polyalphabetic cipher in which the
number of different substitutions r is also part of the key.
Thus, the adversary must determine r as well as discover the
different substitutions.

All polyalphabetic ciphers can be broken using letter frequency
analysis, but they are secure enough against manual attacks to
have been used at various times in the past.

The German Enigma encryption machine used in the second world
war is also based on a polyalphabetic cipher.
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Hill cipher

Hill cipher

A polygraphic cipher encrypts several letters at a time.
It tends to mask the letter frequencies, making it much harder to
break.

The Hill cipher is such an example based on linear algebra.

I The key is, say, a non-singular 3× 3 matrix K .

I The message m is divided into vectors mi of 3 letters each.

I Encryption is just the matrix-vector product ci = Kmi .

I Decryption uses the matrix inverse, mi = K−1ci .

Unfortunately, the Hill cipher succumbs to a known plaintext
attack. Given three linearly independent vectors m1, m2, and m3

and the corresponding ciphertexts ci = Kmi , i = 1, 2, 3, it is
straightforward to solve for K .
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Playfair cipher

Playfair cipher

The Playfair cipher, invented by Charles Wheatstone in 1854 but
popularized by Lord Lyon Playfair, is another example of a
polygraphic cipher [MvOV96, chapter 7, pp. 239-240] and [Wik].

Here, the key is a passphrase from which one constructs a 5× 5
matrix of letters. Pairs of plaintext letters are then located in the
matrix and used to produce a corresponding pair of ciphertext
letters.
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Playfair cipher

How Playfair works

Construct the matrix from the passphrase.

I Construct the matrix by writing the passphrase into the
matrix cells from left to right and top to bottom.

I Omit any letters that have previously been used.

I Fill remaining cells with the letters of the alphabet that do
not occur in the passphrase, in alphabetical order.

I In carrying out this process, “I” and “J” are identified, so we
are effectively working over a 25-character alphabet.

Thus, each letter of the 25-character alphabet occurs exactly once
in the resulting matrix.
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Playfair cipher

Example Playfair matrix

Let the passphrase be

“CRYPTOGRAPHY REQUIRES STRONG KEYS”.

The resulting matrix is

C R Y P T
O G A H E
Q U I/J S N
K B D F L
M V W X Z

First occurrence of each letter in the passphrase shown in orange:

“CRYPTOGRAPHY REQUIRES STRONG KEYS”.

Letters not occurring in the passphrase: BDFLMVWXZ.
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Playfair cipher

Encrypting in Playfair: preparing the message
To encrypt a message using Playfair:

I Construct the matrix.

I Remove spaces and pad the message with a trailing ’X’, if
necessary, to make the length even.

I Break up the message into pairs of letters.

I In case a pair of identical letters is about to be produced,
insert an “X” to prevent that.

Examples:

I “MEET ME AT THE SUBWAY” becomes “ME” “ET” “ME”
“AT” “TH” “ES” “UB” “WA” “YX”.

I “A GOOD BOOK” becomes “AG”, “OX”, “OD” “BO”,
“OK”.
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Playfair cipher

Encrypting in Playfair: substituting the pairs
To encrypt pair ab, look at rectangle with a and b at its corners.

1. If a and b appear in different rows and different columns,
replace each by the letter at the opposite end of the
corresponding row. Example: replace “AT” by “EY”:

Y P T
A H E

2. If a and b appear in the same row, then replace a by the next
letter circularly to its right in the row, and similarly for b. For
example, the encryption of “LK” is “KB”.

3. If a and b appear in the same column, then replace a by the
next letter circularly down in the column, and similarly for b.

Example: “MEET ME AT THE SUBWAY” encrypts as
“ZONEZOEYPEHNBVYIPW”.
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Playfair cipher

Decrypting in Playfair

Decryption is by a similar procedure.

In decrypting, one must manually remove the spurious occurrences
of “X” and resolve the “I/J” ambiguities.

See Trappe and Washington [TW06] for a discussion of how the
system was successfully attacked by French cryptanalyst Georges
Painvin and the Bureau du Chiffre.
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Playfair cipher
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