e
Outline PRSG Sequences of blocks Byte chaining modes Attacks

00000000000
: :

CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 7
September 18, 2013

CPSC 467, Lecture 7 1/36
00

e
Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Pseudorandom sequence generator

Using block ciphers on sequences of blocks
Byte padding
Chaining modes

Extending chaining modes to bytes

Active adversary attacks

| |
CPSC 467, Lecture 7 2/36

e
Outline PRSG Sequences of blocks Byte chaining modes Attacks

00000000000
: :

Pseudorandom sequence generator

CPSC 467, Lecture 7 3/36
00

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Pseudorandom sequence generator (PRSG)
Recall that one can build a stream cipher from a one-time pad by
using a pseudorandom sequence generator to generate the key
instead of choosing a truly random key.
A pseudoramdom sequence generator (PRSG) consists of:
1. a seed (or master key),
2. a state,
3. a next-state generator,
4. an output function.
The initial state is derived from the seed.
At each stage, the state is updated and the output function is

applied to the state to obtain the next component of the output
stream.

| |
CPSC 467, Lecture 7 4/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Security requirements

» The output of the PRSG must “look” random.

» Any regularities in the output of the PRSG give an attacker
information about the plaintext.

» A known plaintext-ciphertext pair (m, ¢) gives the attacker a
sample output sequence from the PRSG (namely, m & c.)

» If the attacker is able to figure out the internal state, then she
will be able to predict all future outputs of the generator and
decipher the remainder of the ciphertext.

A pseudorandom sequence generator that resists all feasible
attempts to predict future outputs, even knowing a sequence of
past outputs, is said to be cryptographically strong.

| |
CPSC 467, Lecture 7 5/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Cryptographically strong PRSGs

Commonly-used linear congruential pseudorandom number
generators typically found in software libraries are quite insecure.

After observing a relatively short sequence of outputs, one can
solve for the state and correctly predict all future outputs.

Notes:

» The Linux random() is non-linear and hence much better, though
still not cryptographically strong.

> We will return to pseudorandom number generation later in this
course.

> See Goldwasser & Bellare Chapter 3 for an in-depth discussion of
this topic.

| |
CPSC 467, Lecture 7 6/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

|deas for improving stream ciphers

As with one-time pads, the same keystream must not be used more
than once.

A possible improvement: Make the next state depend on the
current plaintext or ciphertext characters.

Then the generated keystreams will diverge on different messages,
even if the key is the same.

Serious drawback: One bad ciphertext character will render the
rest of the message undecipherable.

| |
CPSC 467, Lecture 7 7/36

e
Outline PRSG Sequences of blocks Byte chaining modes Attacks

00000000000
: :

Using block ciphers on sequences of blocks

CPSC 467, Lecture 7 8/36
00

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Recall: Difference between block and stream ciphers

A block cipher cannot be used directly as a stream cipher.

» A stream cipher must output the current ciphertext byte
before reading the next plaintext byte.

» A block cipher waits to output the current ciphertext block
until a block’s worth of message bytes have been accumulated.

We first return to the problem of using a block cipher to encrypt a
sequence of blocks in an on-line fashion and then extend those
ideas to become a true stream cipher.

CPSC 467, Lecture 7 9/36
00

Outline PRSG Sequences of blocks Byte chaining modes Attacks
®0000000000

:
Byte padding

Padding revisited

Earlier we presented a method of bit padding to turn an abtirary
bit string into one whose length is a multiple of the block length.

Often the underlying message consists of a sequence of bytes, and
a block comprises some number b of bytes.

This enables byte padding methods to be used, some of which are
very simple.

|
CPSC 467, Lecture 7 10/36

00

Outline PRSG Sequences of blocks Byte chaining modes Attacks
0®000000000
: :
Byte padding
: :

PKCS7 padding

PKCS7 #7 is a message syntax described in internet RFC 2315.
It's padding rule is to fill a partially filled last block having k
“holes” with k bytes, each having the value k when regarded as a
binary number.

At least one byte is always added. \Why?

For example, if the last block is 3 bytes short of being full, then
the last 3 bytes are set to the values 03 03 03.

On decoding, if the last block of the message does not have this
form, then a decoding error is indicated.

Example: The last block cannot validly end in ...25 00 03.

: :
CPSC 467, Lecture 7 11/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks

OO®00000000
:

:
Chaining modes
:

Chaining mode

A chaining mode tells how to encrypt a sequence of plaintext
blocks my, my, ..., m; to produce a corresponding sequence of

ciphertext blocks c1, ¢, ..., ¢, and conversely, how to recover the
m;'s given the ¢'s.

:
CPSC 467, Lecture 7 12/36

00

Outline PRSG Sequences of blocks Byte chaining modes Attacks
000®0000000
: :
Chaining modes
: :

Electronic Codebook Mode (ECB)

Each block is encrypted separately.
» To encrypt, Alice computes ¢; = Ex(m;) for each i.

» To decrypt, Bob computes m; = Di(c;) for each i.

This is in effect a monoalphabetic cipher, where the “alphabet” is
the set of all possible blocks and the permutation is Ej.

CPSC 467, Lecture 7 13/36
00

Outline PRSG Sequences of blocks Byte chaining modes Attacks
0000®000000
: :
Chaining modes
: :

Cipher Block Chaining Mode (CBC)

Prevents identical plaintext blocks from having identical
ciphertexts.

» To encrypt, Alice applies E, to the XOR of the current
plaintext block with the previous ciphertext block.
That is, ¢; = Ek(m,- D C,'_1).

» To decrypt, Bob computes m; = Di(c;) @ ci—1.

To get started, we take cg = IV, where IV is a fixed initialization
vector which we assume is publicly known.

: :
CPSC 467, Lecture 7 14/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000®00000
: :
Chaining modes
: :

Output Feedback Mode (OFB)

Similar to a one-time pad, but keystream is generated using Ej.

» To encrypt, Alice repeatedly applies the encryption function to
an initial vector (1V) ko to produce a stream of block keys
kl, kg, ey where k,' = Ek(k,'_l).

The block keys are XORed with successive plaintext blocks.
That is, ¢; = m; @ k;.
> To decrypt, Bob applies exactly the same method to the

ciphertext to get the plaintext.
That is, m; = ¢; @ kj, where kj = Ex(ki—1) and ko = IV.

| |
CPSC 467, Lecture 7 15/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks

0OO0000e0000
:

Chaining modes
:

Cipher-Feedback Mode (CFB)

Similar to OFB, but keystream depends on previous messages as
well as on Ey.

» To encrypt, Alice computes the XOR of the current plaintext
block with the encryption of the previous ciphertext block.
Thatis, ¢; = m; @© Ek(C,'_l).

Again, ¢ is a fixed initialization vector.

» To decrypt, Bob computes m; = ¢; & Ex(cj_1).

Note that Bob is able to decrypt without using the block
decryption function Dy. In fact, it is not even necessary for Ej to

be a one-to-one function (but using a non one-to-one function
might weaken security).

CPSC 467, Lecture 7 16/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000008000
: :
Chaining modes
: :

OFB, CFB, and stream ciphers

Both CFB and OFB are closely related to stream ciphers.
In both cases, ¢; is m; XORed with some function of data that
came before stage i.

Like a one-time pad, OFB is insecure if the same key is ever
reused, for the sequence of k;'s generated will be the same.
If m and m’ are encrypted using the same key k, then
mom=cdc.

CFB avoids this problem, for even if the same key k is used for two
different message sequences m; and m’, it is only true that

m;i & m’ = ¢; @ c! ® Ex(ci—1) ® Ex(c/_;), and the dependency on k
does not drop out.

: :
CPSC 467, Lecture 7 17/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000800
: :
Chaining modes
: :

Propagating Cipher-Block Chaining Mode (PCBC)

Here is a more complicated chaining rule that nonetheless can be
deciphered.
» To encrypt, Alice XORs the current plaintext block, previous
plaintext block, and previous ciphertext block.
That is, ¢; = Ex(m; ® mj—1 @ ¢j—1). Here, both my and ¢ are
fixed initialization vectors.

» To decrypt, Bob computes m; = Dy (¢;) ® mj—1 & ci—1.

| |
CPSC 467, Lecture 7 18/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks

00000000080
:

Chaining modes
:

Recovery from data corruption

In real applications, a ciphertext block might be damaged or lost.
An interesting property is how much plaintext is lost as a result.
» With ECB and OFB, if Bob receives a bad block ¢;, then he
cannot recover the corresponding m;, but all good ciphertext
blocks can be decrypted.
» With CBC and CFB, Bob needs good ¢; and ¢;_1 blocks in
order to decrypt m;. Therefore, a bad block ¢; renders both
m; and mj;1 unreadable.
» With PCBC, bad block c¢; renders m; unreadable for all j > i.

Error-correcting codes applied to the ciphertext are often used in
practice since they minimize lost data and give better indications
of when irrecoverable data loss has occurred.

|
CPSC 467, Lecture 7 19/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
0000000000e
: :
Chaining modes
: :

Other modes

Other modes can easily be invented.

In all cases, ¢; is computed by some expression (which may depend
on i) built from Ei() and & applied to available information:

» ciphertext blocks ci,...,¢ci_1,
» message blocks my, ..., m;,
> any initialization vectors.

Any such equation that can be “solved” for m; (by possibly using
Dy () to invert Ex()) is a suitable chaining mode in the sense that
Alice can produce the ciphertext and Bob can decrypt it.

Of course, the resulting security properties depend heavily on the
particular expression chosen.

| |
CPSC 467, Lecture 7 20/36

e
Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Extending chaining modes to bytes

CPSC 467, Lecture 7 21/36
00

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Stream ciphers from OFB and CFB block ciphers

and block modes can be turned into stream ciphers.
Both compute ¢; = m; & k;, where

> k,' = Ek(k,'_l) (for OFB),

> k,' = Ek(C,',l) (for CFB)
Assume a block size of b bytes numbered 0,...,b— 1.

Then ¢;; = m;; @ k;j, so each output byte ¢; ; can be computed
before knowing mj; j for j' > j; no need to wait for all of m;.

One must keep track of j. When j = b, the current block is
finished, i must be incremented, j must be reset to 0, and k41
must be computed.

CPSC 467, Lecture 7 22/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Extended OFB and CFB modes

Simpler (for hardware implementation) and more uniform stream
ciphers result by also computing k; a byte at a time.

The idea: Use a shift register X to accumulate the feedback bits
from previous stages of encryption so that the full-sized blocks
needed by the block chaining method are available.

X is initialized to some public initialization vector.

| |
CPSC 467, Lecture 7 23/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Some notation

Assume block size b = 16 bytes.

Define two operations: L and R on blocks:
» L(x) is the leftmost byte of x;
» R(x) is the rightmost b — 1 bytes of x.

CPSC 467, Lecture 7 24/36
00

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Extended OFB and CFB similarities

The extended versions of OFB and CFB are very similar.
Both maintain a one-block shift register X.

The shift register value X at stage s depends only on c1,...,Cs—1
(which are now single bytes) and the master key k.

At stage 7, Alice

» computes Xs according to Extended OFB or Extended CFB
rules;

» computes byte key ks = L(Ex(Xs));
> encrypts message byte ms as ¢s = ms @ k.

Bob decrypts similarly.

|
CPSC 467, Lecture 7 25/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Shift register rules

The two modes differ in how they update the shift register.
Extended OFB mode

Xs - R(Xs—l) . ks—l
Extended CFB mode

Xs = R(Xs—l) *Cs—1

(" denotes concatenation.)

Summary:
» Extended OFB keeps the most recent b key bytes in X.
» Extended CFB keeps the most recent b ciphertext bytes in X,

| |
CPSC 467, Lecture 7 26/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Comparison of extended OFB and CFB modes

The differences seem minor, but they have profound implications
on the resulting cryptosystem.

» In eOFB mode, Xs depends only on s and the master key k
(and the initialization vector IV), so loss of a ciphertext byte
causes loss of only the corresponding plaintext byte.

» In eCFB mode, loss of ciphertext byte ¢s causes mg and all

succeeding message bytes to become undecipherable until ¢
is shifted off the end of X. Thus, b message bytes are lost.

: :
CPSC 467, Lecture 7 27/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Downside of extended OFB

The downside of eOFB is that security is lost if the same master
key is used twice for different messages. CFB does not suffer from
this problem since different messages lead to different ciphertexts
and hence different keystreams.

Nevertheless, eCFB has the undesirable property that the
keystreams are the same up to and including the first byte in which
the two message streams differ.

This enables Eve to determine the length of the common prefix of
the two message streams and also to determine the XOR of the
first bytes at which they differ.

| |
CPSC 467, Lecture 7 28/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Possible solution

Possible solution to both problems: Use a different initialization
vector for each message. Prefix the ciphertext with the
(unencrypted) IV so Bob can still decrypt.

CPSC 467, Lecture 7 29/36
00

R

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Active adversary attacks

CPSC 467, Lecture 7 30/36
00

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Active adversary
Recall from lecture 3 the active adversary “Mallory” who has the
power to modify messages and generate his own messages as well
as eavesdrop.

Alice sends ¢ = Ex(m), but Bob may receive a corrupted or forged
c #c.

How does Bob know that the message he receives really was sent
by Alice?

The naive answer is that Bob computes m’ = Dy (c’), and if m’
“looks like” a valid message, then Bob accepts it as having come
from Alice. The reasoning here is that Mallory, not knowing k,
could not possibly have produced a valid-looking message. For any
particular cipher such as DES, that assumption may or may not be
valid.

| |
CPSC 467, Lecture 7 31/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Some active attacks

Three successively weaker (and therefore easier) active attacks in
which Mallory might produce fraudulent messages:

1. Produce valid ¢’ = Ex(m’) for a message m’ of his choosing.

2. Produce valid ¢’ = Ex(m’) for a message m’ that he cannot
choose and perhaps does not even know.

3. Alter a valid ¢ = Ex(m) to produce a new valid ¢’ that
corresponds to an altered message m’ of the true message m.

Attack (1) requires computing ¢ = Ex(m) without knowing k.

This is similar to Eve's ciphertext-only passive attack where she
tries to compute m = Dy (c) without knowing k.

It's conceivable that one attack is possible but not the other.

| |
CPSC 467, Lecture 7 32/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Replay attacks

One form of attack (2) clearly is possible.

In a replay attack, Mallory substitutes a legitimate old encrypted
message ¢’ for the current message c.

It can be thwarted by adding timestamps and/or sequence
numbers to the messages so that Bob can recognize when old
messages are being received.

Of course, this only works if Alice and Bob anticipate the attack
and incorporate appropriate countermeasures into their protocol.

|
CPSC 467, Lecture 7 33/36

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Fake encrypted messages

Even if replay attacks are ruled out, a cryptosystem that is secure
against attack (1) might still permit attack (2).

There are all sorts of ways that Mallory can generate values ¢’.

What gives us confidence that Bob won't accept one of them as
being valid?

|
CPSC 467, Lecture 7 34/36
00

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Message-altering attacks

Attack (3) might be possible even when (1) and (2) are not.

For example, if c; and ¢ are encryptions of valid messages,
perhaps so is ¢; P .

This depends entirely on particular properties of Ej unrelated to
the difficulty of decrypting a given ciphertext.

We will see some cryptosystems later that do have the property of
being vulnerable to attack (3). In some contexts, this ability to do
meaning computations on ciphertexts can actually be useful, as we
shall see.

|
CPSC 467, Lecture 7 35/36

00

Outline PRSG Sequences of blocks Byte chaining modes Attacks
00000000000

Encrypting random-looking strings

Cryptosystems are not always used to send natural language or
other highly-redundant messages.

For example, suppose Alice wants to send Bob her password to a
web site. Knowing full well the dangers of sending passwords in the
clear over the internet, she chooses to encrypt it instead. Since
passwords are supposed to look like random strings of characters,
Bob will likely accept anything he gets from Alice.

He could be quite embarrassed (or worse) claiming he knew Alice's
password when in fact the password he thought was from Alice was
actually a fraudulent one derived from a random ciphertext ¢’
produced by Mallory.

| |
CPSC 467, Lecture 7 36/36

	Pseudorandom sequence generator
	Using block ciphers on sequences of blocks
	Byte padding
	Chaining modes

	Extending chaining modes to bytes
	Active adversary attacks

