CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 9 September 25, 2013

Integer Division

Quotient, remainder, and mod

The mod relation

GCD

Outline

Relatively prime numbers, \mathbf{Z}_n^* , and $\phi(n)$

Discrete Logarithm

Diffie-Hellman Key Exchange

ElGamal Key Agreement

Integer Division

ElGamal

Quotient, remainder, and mod

Quotient and remainder

Theorem (division theorem)

Let a, b be integers and assume b > 0. There are unique integers q (the quotient) and r (the remainder) such that a = bq + r and 0 < r < b.

Write the quotient as $a \div b$ and the remainder as $a \mod b$. Then

$$a = b \times (a \div b) + (a \bmod b).$$

Equivalently,

$$a \mod b = a - b \times (a \div b).$$

$$a \div b = |a/b|.$$

¹Here, / is ordinary real division and $\lfloor x \rfloor$, the *floor* of x, is the greatest integer $\leq x$. In C, / is used for both \div and / depending on its operand types.

Quotient, remainder, and mod

The mod operator for negative numbers

When either a or b is negative, there is no consensus on the definition of $a \mod b$.

By our definition, $a \mod b$ is always in the range $[0 \dots b-1]$, even when a is negative.

Example,

$$(-5) \mod 3 = (-5) - 3 \times ((-5) \div 3) = -5 - 3 \times (-2) = 1.$$

The mod operator % in C

In the C programming language, the mod operator % is defined differently, so $(a \% b) \neq (a \mod b)$ when a is negative and b is positive.

The C standard defines a % b to be the number r satisfying the equation (a/b) * b + r = a, so r = a - (a/b) * b.

C also defines a/b to be the result of rounding the real number a/b towards zero, so -5/3 = -1. Hence,

$$-5\%3 = -5 - (-5/3)*3 = -5 + 3 = -2.$$

Divides

Outline

We say that b divides a (exactly) and write $b \mid a$ in case $a \mod b = 0$.

Fact

If $d \mid (a + b)$, then either d divides both a and b, or d divides neither of them.

To see this, suppose $d \mid (a+b)$ and $d \mid a$. Then by the division theorem, $a+b=dq_1$ and $a=dq_2$ for some integers q_1 and q_2 . Substituting for a and solving for b, we get

$$b = dq_1 - dq_2 = d(q_1 - q_2).$$

But this implies $d \mid b$, again by the division theorem.

The mod relation

We just saw that mod is a binary operation on integers.

Mod is also used to denote a relationship on integers:

$$a \equiv b \pmod{n}$$
 iff $n \mid (a - b)$.

That is, a and b have the same remainder when divided by n. An immediate consequence of this definition is that

$$a \equiv b \pmod{n}$$
 iff $(a \mod n) = (b \mod n)$.

Thus, the two notions of mod aren't so different after all!

We sometimes write $a \equiv_n b$ to mean $a \equiv b \pmod{n}$.

The mod relation

Mod is an equivalence relation

The two-place relationship \equiv_n is an equivalence relation.

Its equivalence classes are called *residue* classes modulo n and are denoted by $[b]_{\equiv_n} = \{a \mid a \equiv b \pmod{n}\}$ or simply by [b].

For example, if n = 7, then $[10] = \{... - 11, -4, 3, 10, 17, ...\}$.

Fact

$$[a] = [b]$$
 iff $a \equiv b \pmod{n}$.

Canonical names

If $x \in [b]$, then x is said to be a *representative* or *name* of the equivalence class [b]. Obviously, b is a representative of [b]. Thus, [-11], [-4], [3], [10], [17] are all names for the same equivalence class.

The *canonical* or preferred name for the class [b] is the unique integer in $[b] \cap \{0, 1, \dots, n-1\}$.

Thus, the canonical name for [10] is 10 mod 7 = 3.

The mod relation

Outline

Mod is a congruence relation

The relation \equiv_n is a *congruence relation* with respect to addition. subtraction, and multiplication of integers.

Fact

For each arithmetic operation $\odot \in \{+, -, \times\}$, if $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then

$$a \odot b \equiv a' \odot b' \pmod{n}$$
.

The class containing the result of $a \odot b$ depends only on the classes to which a and b belong and not the particular representatives chosen.

Hence, we can perform arithmetic on equivalence classes by operating on their names.

Greatest common divisor

Definition

The greatest common divisor of two integers a and b, written gcd(a, b), is the largest integer d such that $d \mid a$ and $d \mid b$.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of every integer, and the divisor of a non-zero number cannot be larger (in absolute value) than the number itself.

Question: Why isn't gcd(0,0) well defined?

Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form.

Namely, let p_i be the i^{th} prime. Write $a = \prod p_i^{e_i}$ and $b = \prod p_i^{f_i}$. Then

$$\gcd(a,b)=\prod p_i^{\min(e_i,f_i)}.$$

Example: $168 = 2^3 \cdot 3 \cdot 7$ and $450 = 2 \cdot 3^2 \cdot 5^2$, so $gcd(168, 450) = 2 \cdot 3 = 6$.

However, factoring is believed to be a hard problem, and no polynomial-time factorization algorithm is currently known. (If it were easy, then Eve could use it to break RSA, and RSA would be of no interest as a cryptosystem.)

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the need to factor a and b using the famous *Euclidean algorithm*.

Euclid's algorithm is remarkable, not only because it was discovered a very long time ago, but also because it works without knowing the factorization of *a* and *b*.

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the gcd function. In the following, assume a > 0 and $a \ge b \ge 0$:

$$\gcd(a,b) = \gcd(b,a) \tag{1}$$

$$\gcd(a,0) = a \tag{2}$$

$$\gcd(a,b) = \gcd(a-b,b) \tag{3}$$

Identity 1 is obvious from the definition of gcd. Identity 2 follows from the fact that every positive integer divides 0. Identity 3 follows from the basic fact relating divides and addition on slide 7.

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b) to be reduced to the problem of computing gcd(a - b, b).

The new problem is "smaller" as long as b > 0.

The *size* of the problem gcd(a, b) is |a| + |b|, the sum of the two arguments. This leads to an easy recursive algorithm.

```
int gcd(int a, int b)
{
  if ( a < b ) return gcd(b, a);
  else if ( b == 0 ) return a;
  else return gcd(a-b, b);
}</pre>
```

Nevertheless, this algorithm is not very efficient, as you will quickly discover if you attempt to use it, say, to compute gcd(1000000, 2).

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can't be applied any more produces the sequence of pairs

$$(a,b), (a-b,b), (a-2b,b), \ldots, (a-qb,b).$$

The sequence stops when a - qb < b.

How many times you can subtract *b* from *a* while remaining non-negative?

Answer: The quotient $q = \lfloor a/b \rfloor$.

Using division in place of repeated subtractions

The amout a - qb that is left after q subtractions is just the remainder $a \mod b$.

Hence, one can go directly from the pair (a, b) to the pair $(a \mod b, b)$.

This proves the identity

$$\gcd(a,b) = \gcd(a \bmod b,b). \tag{4}$$

Full Euclidean algorithm

```
Recall the inefficient GCD algorithm.

int gcd(int a, int b) {

if (a < b) return gcd(b, a);
```

```
else if ( b == 0 ) return a;
else return gcd(a-b, b);
```

The following algorithm is exponentially faster.

```
int gcd(int a, int b) {
  if ( b == 0 ) return a;
  else return gcd(b, a%b);
```

Principal change: Replace gcd(a-b,b) with gcd(b, a%b).

Besides collapsing repeated subtractions, we have $a \ge b$ for all but the top-level call on gcd(a, b). This eliminates roughly half of the remaining recursive calls.

Complexity of GCD

The new algorithm requires at most in O(n) stages, where n is the sum of the lengths of a and b when written in binary notation, and each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

```
int gcd(int a, int b) {
   int aa;
   while (b > 0) {
      aa = a;
      a = b;
      b = aa % b;
   }
   return a;
}
```

Relatively prime numbers

Two integers a and b are *relatively prime* if they have no common prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let \mathbf{Z}_n^* be the set of integers in \mathbf{Z}_n that are relatively prime to n, so

$$\mathbf{Z}_n^* = \{ a \in \mathbf{Z}_n \mid \gcd(a, n) = 1 \}.$$

Relatively prime numbers, \mathbf{Z}_n^* , and $\phi(n)$

Euler's totient function $\phi(n)$

 $\phi(n)$ is the cardinality (number of elements) of \mathbf{Z}_n^* , i.e.,

$$\phi(n) = |\mathbf{Z}_n^*|.$$

Properties of $\phi(n)$:

1. If p is prime, then

$$\phi(p)=p-1.$$

2. More generally, if p is prime and $k \ge 1$, then

$$\phi(p^k) = p^k - p^{k-1} = (p-1)p^{k-1}.$$

3. If gcd(m, n) = 1, then

$$\phi(mn) = \phi(m)\phi(n).$$

Example: $\phi(26)$

Outline

Can compute $\phi(n)$ for all $n \ge 1$ given the factorization of n.

$$\phi(126) = \phi(2) \cdot \phi(3^{2}) \cdot \phi(7)$$

$$= (2-1) \cdot (3-1)(3^{2-1}) \cdot (7-1)$$

$$= 1 \cdot 2 \cdot 3 \cdot 6 = 36.$$

The 36 elements of \mathbf{Z}_{126}^* are:

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125.

A formula for $\phi(n)$

Here is an explicit formula for $\phi(n)$.

Theorem

Outline

Write n in factored form, so $n = p_1^{e_1} \cdots p_k^{e_k}$, where p_1, \dots, p_k are distinct primes and e_1, \dots, e_k are positive integers.² Then

$$\phi(n) = (p_1 - 1) \cdot p_1^{e_1 - 1} \cdots (p_k - 1) \cdot p_k^{e_k - 1}.$$

For the product of distinct primes p and q,

$$\phi(pq)=(p-1)(q-1).$$

 $^{^2\}mathrm{By}$ the fundamental theorem of arithmetic, every integer can be written uniquely in this way up to the ordering of the factors.

Discrete Logarithm

Outline

Logarithms mod p

Let $y = b^x$ over the reals. The ordinary base-b logarithm is the inverse of the exponential function, so $x = \log_b(y)$

The discrete logarithm is defined similarly, but now arithmetic is performed in \mathbf{Z}_p^* for a prime p.

In particular, the base-b discrete logarithm of y modulo p is the least non-negative integer x such that $y \equiv b^x \pmod{p}$ (if it exists). We write $x = \log_b(y) \pmod{p}$.

Fact (not needed yet): If b is a primitive root³ of p, then $\log_b(y)$ is defined for every $y \in \mathbf{Z}_p^*$.

³We will talk about primitive roots later.

Discrete log problem

The discrete log problem is the problem of computing $\log_b(y) \mod p$, where p is a prime and b is a primitive root of p.

No efficient algorithm is known for this problem and it is believed to be intractable.

However, the inverse of the function $\log_b()$ mod p is the function $\operatorname{power}_b(x) = b^x \mod p$, which is easily computable.

power $_b$ is believed to be a *one-way function*, that is a function that is easy to compute but hard to invert.

The *key exchange problem* is for Alice and Bob to agree on a common random key *k*.

One way for this to happen is for Alice to choose k at random and then communicate it to Bob over a secure channel.

But that presupposes the existence of a secure channel.

D-H key exchange overview

The Diffie-Hellman Key Exchange protocol allows Alice and Bob to agree on a secret k without having prior secret information and without giving an eavesdropper Eve any information about k. The protocol is given on the next slide.

We assume that p and g are publicly known, where p is a large prime and g a primitive root of p.

Outline

D-H key exchange protocol

Alice	Bob
Choose random $x \in \mathbf{Z}_{\phi(p)}$.	Choose random $y \in \mathbf{Z}_{\phi(p)}$.
$a = g^x \mod p$.	$b = g^y \mod p$.
Send a to Bob.	Send b to Alice.
$k_a = b^x \mod p$.	$k_b = a^y \mod p$.

Diffie-Hellman Key Exchange Protocol.

Clearly, $k_a = k_b$ since

$$k_a \equiv b^x \equiv g^{xy} \equiv a^y \equiv k_b \pmod{p}$$
.

Hence, $k = k_a = k_b$ is a common key.

Security of DH key exchange

In practice, Alice and Bob can use this protocol to generate a session key for a symmetric cryptosystem, which they can subsequently use to exchange private information.

The security of this protocol relies on Eve's presumed inability to compute k from a and b and the public information p and g. This is sometime called the *Diffie-Hellman problem* and, like discrete log, is believed to be intractable.

Certainly the Diffie-Hellman problem is no harder that discrete log, for if Eve could find the discrete log of a, then she would know x and could compute k_a the same way that Alice does.

However, it is not known to be as hard as discrete log.

Diffie-Hellman

A variant of DH key exchange

A variant protocol has Bob going first followed by Alice.

Alice	Bob
	Choose random $y \in \mathbf{Z}_{\phi(p)}$.
	$b = g^y \mod p$.
	Send b to Alice.
Choose random $x \in \mathbf{Z}_{\phi(p)}$. $a = g^x \mod p$. Send a to Bob.	
$k_a = b^{x} \mod p$.	$k_b = a^y \mod p$.

ElGamal Variant of Diffie-Hellman Key Exchange.

Comparison with first DH protocol

The difference here is that Bob completes his action at the beginning and no longer has to communicate with Alice.

Alice, at a later time, can complete her half of the protocol and send a to Bob, at which point Alice and Bob share a key.

This is just the scenario we want for public key cryptography. Bob generates a public key (p, g, b) and a private key (p, g, y).

Alice (or anyone who obtains Bob's public key) can complete the protocol by sending a to Bob.

This is the idea behind the ElGamal public key cryptosystem.

Diffie-Hellman

ElGamal cryptosystem

Assume Alice knows Bob's public key (p, g, b). To encrypt a message m:

- ▶ She first completes her part of the key exchange protocol to obtain numbers a and k.
- ▶ She then computes $c = mk \mod p$ and sends the pair (a, c)to Bob.
- ▶ When Bob gets this message, he first uses a to complete his part of the protocol and obtain k.
- ▶ He then computes $m = k^{-1}c \mod p$.

Combining key exchange with underlying cryptosystem

The ElGamal cryptosystem uses the simple encryption function $E_k(m) = mk \mod p$ to actually encode the message.

Any symmetric cryptosystem would work equally well.

An advantage of using a standard system such as AES is that long messages can be sent following only a single key exchange.

A hybrid ElGamal cryptosystem

A hybrid ElGamal public key cryptosystem.

- As before, Bob generates a public key (p, g, b) and a private key (p, g, y).
- ▶ To encrypt a message m to Bob, Alice first obtains Bob's public key and chooses a random $x \in \mathbf{Z}_{\phi(p)}$.
- ▶ She next computes $a = g^x \mod p$ and $k = b^x \mod p$.
- She then computes $E_{(p,g,b)}(m) = (a, \hat{E}_k(m))$ and sends it to Bob. Here, \hat{E} is the encryption function of the underlying symmetric cryptosystem.
- ▶ Bob receives a pair (a, c).
- ▶ To decrypt, Bob computes $k = a^y \mod p$ and then computes $m = \hat{D}_k(c)$.

Randomized encryption

We remark that a new element has been snuck in here. The ElGamal cryptosystem and its variants require Alice to generate a random number which is then used in the course of encryption.

Thus, the resulting encryption function is a *random function* rather than an ordinary function.

A random function is one that can return different values each time it is called, even for the same arguments.

Formally, we view a random function as returning a probability distribution on the output space.

Remarks about randomized encryption

With $E_{(p,g,b)}(m)$ each message m has many different possible encryptions. This has some consequences.

An advantage: Eve can no longer use the public encryption function to check a possible decryption.

Even if she knows m, she cannot verify m is the correct decryption of (a,c) simply by computing $E_{(p,g,b)}(m)$, which she could do for a deterministic cryptosystem such as RSA.

Two disadvantages:

- Alice must have a source of randomness.
- ▶ The ciphertext is longer than the corresponding plaintext.