
Outline Integer Division Discrete log Diffie-Hellman ElGamal

CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 9
September 25, 2013

CPSC 467, Lecture 9 1/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Integer Division
Quotient, remainder, and mod
The mod relation
GCD
Relatively prime numbers, Z∗n, and φ(n)

Discrete Logarithm

Diffie-Hellman Key Exchange

ElGamal Key Agreement

CPSC 467, Lecture 9 2/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Integer Division

CPSC 467, Lecture 9 3/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Quotient, remainder, and mod

Quotient and remainder

Theorem (division theorem)

Let a, b be integers and assume b > 0. There are unique integers q
(the quotient) and r (the remainder) such that a = bq + r and
0 ≤ r < b.

Write the quotient as a÷ b and the remainder as a mod b. Then

a = b × (a÷ b) + (a mod b).

Equivalently,
a mod b = a− b × (a÷ b).

a÷ b = ba/bc.1

1Here, / is ordinary real division and bxc, the floor of x , is the greatest
integer ≤ x . In C, / is used for both ÷ and / depending on its operand types.

CPSC 467, Lecture 9 4/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Quotient, remainder, and mod

The mod operator for negative numbers

When either a or b is negative, there is no consensus on the
definition of a mod b.

By our definition, a mod b is always in the range [0 . . . b − 1], even
when a is negative.

Example,

(−5) mod 3 = (−5)− 3× ((−5)÷ 3) = −5− 3× (−2) = 1.

CPSC 467, Lecture 9 5/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Quotient, remainder, and mod

The mod operator % in C

In the C programming language, the mod operator % is defined
differently, so (a % b) 6= (a mod b) when a is negative and b is
positive.

The C standard defines a % b to be the number r satisfying the
equation (a/b) ∗ b + r = a, so r = a− (a/b) ∗ b.

C also defines a/b to be the result of rounding the real number
a/b towards zero, so −5/3 = −1. Hence,

−5 % 3 = −5− (−5/3) ∗ 3 = −5 + 3 = −2.

CPSC 467, Lecture 9 6/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Quotient, remainder, and mod

Divides

We say that b divides a (exactly) and write b |a in case
a mod b = 0.

Fact
If d |(a + b), then either d divides both a and b, or d divides
neither of them.

To see this, suppose d |(a + b) and d |a. Then by the division
theorem, a + b = dq1 and a = dq2 for some integers q1 and q2.
Substituting for a and solving for b, we get

b = dq1 − dq2 = d(q1 − q2).

But this implies d |b, again by the division theorem.

CPSC 467, Lecture 9 7/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

The mod relation

The mod relation

We just saw that mod is a binary operation on integers.

Mod is also used to denote a relationship on integers:

a ≡ b (mod n) iff n |(a− b).

That is, a and b have the same remainder when divided by n. An
immediate consequence of this definition is that

a ≡ b (mod n) iff (a mod n) = (b mod n).

Thus, the two notions of mod aren’t so different after all!

We sometimes write a ≡n b to mean a ≡ b (mod n).

CPSC 467, Lecture 9 8/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

The mod relation

Mod is an equivalence relation

The two-place relationship ≡n is an equivalence relation.

Its equivalence classes are called residue classes modulo n and are
denoted by [b]≡n = {a | a ≡ b (mod n)} or simply by [b].

For example, if n = 7, then [10] = {. . .− 11,−4, 3, 10, 17, . . .}.

Fact
[a] = [b] iff a ≡ b (mod n).

CPSC 467, Lecture 9 9/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

The mod relation

Canonical names

If x ∈ [b], then x is said to be a representative or name of the
equivalence class [b]. Obviously, b is a representative of [b].
Thus, [−11], [−4], [3], [10], [17] are all names for the same
equivalence class.

The canonical or preferred name for the class [b] is the unique
integer in [b] ∩ {0, 1, . . . , n − 1}.

Thus, the canonical name for [10] is 10 mod 7 = 3.

CPSC 467, Lecture 9 10/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

The mod relation

Mod is a congruence relation
The relation ≡n is a congruence relation with respect to addition,
subtraction, and multiplication of integers.

Fact
For each arithmetic operation � ∈ {+,−,×}, if a ≡ a′ (mod n)
and b ≡ b′ (mod n), then

a� b ≡ a′ � b′ (mod n).

The class containing the result of a� b depends only on the
classes to which a and b belong and not the particular
representatives chosen.

Hence, we can perform arithmetic on equivalence classes by
operating on their names.

CPSC 467, Lecture 9 11/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

GCD

Greatest common divisor

Definition
The greatest common divisor of two integers a and b, written
gcd(a, b), is the largest integer d such that d |a and d |b.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of
every integer, and the divisor of a non-zero number cannot be
larger (in absolute value) than the number itself.

Question: Why isn’t gcd(0, 0) well defined?

CPSC 467, Lecture 9 12/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

GCD

Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form.

Namely, let pi be the i th prime. Write a =
∏

pei
i and b =

∏
p fi
i .

Then
gcd(a, b) =

∏
p

min(ei ,fi)
i .

Example: 168 = 23 · 3 · 7 and 450 = 2 · 32 · 52, so
gcd(168, 450) = 2 · 3 = 6.

However, factoring is believed to be a hard problem, and no
polynomial-time factorization algorithm is currently known. (If it
were easy, then Eve could use it to break RSA, and RSA would be
of no interest as a cryptosystem.)

CPSC 467, Lecture 9 13/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

GCD

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the
need to factor a and b using the famous Euclidean algorithm.

Euclid’s algorithm is remarkable, not only because it was
discovered a very long time ago, but also because it works without
knowing the factorization of a and b.

CPSC 467, Lecture 9 14/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

GCD

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the
gcd function. In the following, assume a > 0 and a ≥ b ≥ 0:

gcd(a, b) = gcd(b, a) (1)

gcd(a, 0) = a (2)

gcd(a, b) = gcd(a− b, b) (3)

Identity 1 is obvious from the definition of gcd. Identity 2 follows
from the fact that every positive integer divides 0. Identity 3
follows from the basic fact relating divides and addition on slide 7.

CPSC 467, Lecture 9 15/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

GCD

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b)
to be reduced to the problem of computing gcd(a− b, b).

The new problem is “smaller” as long as b > 0.

The size of the problem gcd(a, b) is |a|+ |b|, the sum of the two
arguments. This leads to an easy recursive algorithm.

int gcd(int a, int b)

{

if (a < b) return gcd(b, a);

else if (b == 0) return a;

else return gcd(a-b, b);

}

Nevertheless, this algorithm is not very efficient, as you will quickly
discover if you attempt to use it, say, to compute gcd(1000000, 2).

CPSC 467, Lecture 9 16/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

GCD

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can’t be
applied any more produces the sequence of pairs

(a, b), (a− b, b), (a− 2b, b), . . . , (a− qb, b).

The sequence stops when a− qb < b.

How many times you can subtract b from a while remaining
non-negative?
Answer: The quotient q = ba/bc.

CPSC 467, Lecture 9 17/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

GCD

Using division in place of repeated subtractions

The amout a− qb that is left after q subtractions is just the
remainder a mod b.

Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b).

This proves the identity

gcd(a, b) = gcd(a mod b, b). (4)

CPSC 467, Lecture 9 18/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

GCD

Full Euclidean algorithm
Recall the inefficient GCD algorithm.
int gcd(int a, int b) {

if (a < b) return gcd(b, a);

else if (b == 0) return a;

else return gcd(a-b, b);

}

The following algorithm is exponentially faster.
int gcd(int a, int b) {

if (b == 0) return a;

else return gcd(b, a%b);

}

Principal change: Replace gcd(a-b,b) with gcd(b, a%b).
Besides collapsing repeated subtractions, we have a ≥ b for all but
the top-level call on gcd(a, b). This eliminates roughly half of the
remaining recursive calls.

CPSC 467, Lecture 9 19/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

GCD

Complexity of GCD

The new algorithm requires at most in O(n) stages, where n is the
sum of the lengths of a and b when written in binary notation, and
each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

int gcd(int a, int b) {

int aa;

while (b > 0) {

aa = a;

a = b;

b = aa % b;

}

return a;

}

CPSC 467, Lecture 9 20/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Relatively prime numbers, Z∗
n , and φ(n)

Relatively prime numbers

Two integers a and b are relatively prime if they have no common
prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let Z∗n be the set of integers in Zn that are relatively prime to n, so

Z∗n = {a ∈ Zn | gcd(a, n) = 1}.

CPSC 467, Lecture 9 21/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Relatively prime numbers, Z∗
n , and φ(n)

Euler’s totient function φ(n)
φ(n) is the cardinality (number of elements) of Z∗n, i.e.,

φ(n) = |Z∗n|.

Properties of φ(n):

1. If p is prime, then
φ(p) = p − 1.

2. More generally, if p is prime and k ≥ 1, then

φ(pk) = pk − pk−1 = (p − 1)pk−1.

3. If gcd(m, n) = 1, then

φ(mn) = φ(m)φ(n).

CPSC 467, Lecture 9 22/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Relatively prime numbers, Z∗
n , and φ(n)

Example: φ(26)

Can compute φ(n) for all n ≥ 1 given the factorization of n.

φ(126) = φ(2) · φ(32) · φ(7)

= (2− 1) · (3− 1)(32−1) · (7− 1)

= 1 · 2 · 3 · 6 = 36.

The 36 elements of Z∗126 are:

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53,
55, 59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101,
103, 107, 109, 113, 115, 121, 125.

CPSC 467, Lecture 9 23/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Relatively prime numbers, Z∗
n , and φ(n)

A formula for φ(n)

Here is an explicit formula for φ(n).

Theorem
Write n in factored form, so n = pe1

1 · · · p
ek
k , where p1, . . . , pk are

distinct primes and e1, . . . , ek are positive integers.2 Then

φ(n) = (p1 − 1) · pe1−1
1 · · · (pk − 1) · pek−1

k .

For the product of distinct primes p and q,

φ(pq) = (p − 1)(q − 1).

2By the fundamental theorem of arithmetic, every integer can be written
uniquely in this way up to the ordering of the factors.

CPSC 467, Lecture 9 24/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Discrete Logarithm

CPSC 467, Lecture 9 25/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Logarithms modp

Let y = bx over the reals. The ordinary base-b logarithm is the
inverse of the exponential function, so x = logb(y)

The discrete logarithm is defined similarly, but now arithmetic is
performed in Z∗p for a prime p.

In particular, the base-b discrete logarithm of y modulo p is the
least non-negative integer x such that y ≡ bx (mod p) (if it
exists). We write x = logb(y) mod p.

Fact (not needed yet): If b is a primitive root3 of p, then logb(y)
is defined for every y ∈ Z∗p.

3We will talk about primitive roots later.

CPSC 467, Lecture 9 26/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Discrete log problem

The discrete log problem is the problem of computing
logb(y) mod p, where p is a prime and b is a primitive root of p.

No efficient algorithm is known for this problem and it is believed
to be intractable.

However, the inverse of the function logb() mod p is the function
powerb(x) = bx mod p, which is easily computable.

powerb is believed to be a one-way function, that is a function that
is easy to compute but hard to invert.

CPSC 467, Lecture 9 27/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Diffie-Hellman Key Exchange

CPSC 467, Lecture 9 28/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Key exchange problem

The key exchange problem is for Alice and Bob to agree on a
common random key k.

One way for this to happen is for Alice to choose k at random and
then communicate it to Bob over a secure channel.

But that presupposes the existence of a secure channel.

CPSC 467, Lecture 9 29/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

D-H key exchange overview

The Diffie-Hellman Key Exchange protocol allows Alice and Bob to
agree on a secret k without having prior secret information and
without giving an eavesdropper Eve any information about k . The
protocol is given on the next slide.

We assume that p and g are publicly known, where p is a large
prime and g a primitive root of p.

CPSC 467, Lecture 9 30/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

D-H key exchange protocol

Alice Bob

Choose random x ∈ Zφ(p). Choose random y ∈ Zφ(p).

a = g x mod p. b = g y mod p.

Send a to Bob. Send b to Alice.

ka = bx mod p. kb = ay mod p.

Diffie-Hellman Key Exchange Protocol.

Clearly, ka = kb since

ka ≡ bx ≡ g xy ≡ ay ≡ kb (mod p).

Hence, k = ka = kb is a common key.

CPSC 467, Lecture 9 31/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Security of DH key exchange

In practice, Alice and Bob can use this protocol to generate a
session key for a symmetric cryptosystem, which they can
subsequently use to exchange private information.

The security of this protocol relies on Eve’s presumed inability to
compute k from a and b and the public information p and g . This
is sometime called the Diffie-Hellman problem and, like discrete
log, is believed to be intractable.

Certainly the Diffie-Hellman problem is no harder that discrete log,
for if Eve could find the discrete log of a, then she would know x
and could compute ka the same way that Alice does.

However, it is not known to be as hard as discrete log.

CPSC 467, Lecture 9 32/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

ElGamal Key Agreement

CPSC 467, Lecture 9 33/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

A variant of DH key exchange

A variant protocol has Bob going first followed by Alice.

Alice Bob

Choose random y ∈ Zφ(p).

b = g y mod p.

Send b to Alice.

Choose random x ∈ Zφ(p).

a = g x mod p.

Send a to Bob.

ka = bx mod p. kb = ay mod p.

ElGamal Variant of Diffie-Hellman Key Exchange.

CPSC 467, Lecture 9 34/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Comparison with first DH protocol

The difference here is that Bob completes his action at the
beginning and no longer has to communicate with Alice.

Alice, at a later time, can complete her half of the protocol and
send a to Bob, at which point Alice and Bob share a key.

This is just the scenario we want for public key cryptography. Bob
generates a public key (p, g , b) and a private key (p, g , y).

Alice (or anyone who obtains Bob’s public key) can complete the
protocol by sending a to Bob.

This is the idea behind the ElGamal public key cryptosystem.

CPSC 467, Lecture 9 35/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

ElGamal cryptosystem

Assume Alice knows Bob’s public key (p, g , b). To encrypt a
message m:

I She first completes her part of the key exchange protocol to
obtain numbers a and k .

I She then computes c = mk mod p and sends the pair (a, c)
to Bob.

I When Bob gets this message, he first uses a to complete his
part of the protocol and obtain k .

I He then computes m = k−1c mod p.

CPSC 467, Lecture 9 36/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Combining key exchange with underlying cryptosystem

The ElGamal cryptosystem uses the simple encryption function
Ek(m) = mk mod p to actually encode the message.

Any symmetric cryptosystem would work equally well.

An advantage of using a standard system such as AES is that long
messages can be sent following only a single key exchange.

CPSC 467, Lecture 9 37/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

A hybrid ElGamal cryptosystem

A hybrid ElGamal public key cryptosystem.

I As before, Bob generates a public key (p, g , b) and a private
key (p, g , y).

I To encrypt a message m to Bob, Alice first obtains Bob’s
public key and chooses a random x ∈ Zφ(p).

I She next computes a = g x mod p and k = bx mod p.

I She then computes E(p,g ,b)(m) = (a, Êk(m)) and sends it to

Bob. Here, Ê is the encryption function of the underlying
symmetric cryptosystem.

I Bob receives a pair (a, c).

I To decrypt, Bob computes k = ay mod p and then computes
m = D̂k(c).

CPSC 467, Lecture 9 38/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Randomized encryption

We remark that a new element has been snuck in here. The
ElGamal cryptosystem and its variants require Alice to generate a
random number which is then used in the course of encryption.

Thus, the resulting encryption function is a random function rather
than an ordinary function.

A random function is one that can return different values each
time it is called, even for the same arguments.

Formally, we view a random function as returning a probability
distribution on the output space.

CPSC 467, Lecture 9 39/40

Outline Integer Division Discrete log Diffie-Hellman ElGamal

Remarks about randomized encryption

With E(p,g ,b)(m) each message m has many different possible
encryptions. This has some consequences.

An advantage: Eve can no longer use the public encryption
function to check a possible decryption.

Even if she knows m, she cannot verify m is the correct decryption
of (a, c) simply by computing E(p,g ,b)(m), which she could do for a
deterministic cryptosystem such as RSA.

Two disadvantages:

I Alice must have a source of randomness.

I The ciphertext is longer than the corresponding plaintext.

CPSC 467, Lecture 9 40/40

	Integer Division
	Quotient, remainder, and mod
	The mod relation
	GCD
	Relatively prime numbers, Zn, and (n)

	Discrete Logarithm
	Diffie-Hellman Key Exchange
	ElGamal Key Agreement

