
Outline Integrity/Authenticity Algorithms Security

CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 10
September 30, 2013

CPSC 467, Lecture 10 1/40



Outline Integrity/Authenticity Algorithms Security

Message Integrity and Authenticity
Message authentication codes
Asymmetric digital signatures
Implications of Digital Signatures

Digital Signature Algorithms
RSA digital signatures
Signatures from non-commutative cryptosystems
ElGamal digital signature scheme

Security of Digital Signatures
Desired security properties
Random signed messages
Adding redundancy
Signing message digests

CPSC 467, Lecture 10 2/40



Outline Integrity/Authenticity Algorithms Security

Message Integrity and Authenticity

CPSC 467, Lecture 10 3/40



Outline Integrity/Authenticity Algorithms Security

Protecting messages

Encryption protects message confidentiality.

We also wish to protect message integrity and authenticity.

I Integrity means that the message has not been altered.

I Authenticity means that the message is genuine.

The two are closely linked. The result of a modification attack by
an active adversary could be a message that fails either integrity or
authenticity checks (or both).

In addition, it should not be possible for an adversary to come up
with a forged message that satisfies both integrity and authenticity.

CPSC 467, Lecture 10 4/40



Outline Integrity/Authenticity Algorithms Security

Protecting integrity and authenticity

Authenticity is protected using symmetric or asymmetric digital
signatures.

A digital signature (or MAC) is a string s that binds an individual
or other entity A with a message m.

The recipient of the message verifies that s is a valid signature of
A for message m.

It should hard for an adversary to create a valid signature s ′ for a
message m′ without knowledge of A’s secret information.

This also protects integrity, since a modified message m′ will not
likely verify with signature s (or else (m′, s) would be a successful
forgery).

CPSC 467, Lecture 10 5/40



Outline Integrity/Authenticity Algorithms Security

Message authentication codes

Message authentication codes (MACs)

A Message Authentication Code or MAC is a digital signature
associated with a symmetric (one-key) signature scheme.

A MAC is generated by a function Ck(m) that can be computed by
anyone knowing the secret key k.

It should be hard for an attacker, without knowing k , to find any
pair (m, ξ) such that ξ = Ck(m).

This should remain true even if the attacker knows a set of valid
MAC pairs {(m1, ξ1), . . . , (mt , ξt)} so long as m itself is not the
message in one of the known pairs.

CPSC 467, Lecture 10 6/40



Outline Integrity/Authenticity Algorithms Security

Message authentication codes

Creating an authenticated message

Alice has a secret key k .

I Alice protects a message m (encrypted or not) by attaching a
MAC ξ = Ck(m) to the message m.

I The pair (m, ξ) is an authenticated message.

I To produce a MAC requires possession of the secret key k .

CPSC 467, Lecture 10 7/40



Outline Integrity/Authenticity Algorithms Security

Message authentication codes

Verifying an authenticated message

Bob receives an authenticated message (m′, ξ′). We assume Bob
also knows k.

I Bob verifies the message’s integrity and authenticity by
verifying that ξ′ = Ck(m′).

I If his check succeeds, he accepts m′ as a valid message from
Alice.

I To verify a MAC requires possession of the secret key k .

Assuming Alice and Bob are the only parties who share k, then
Bob knows that m′ came from Alice.

CPSC 467, Lecture 10 8/40



Outline Integrity/Authenticity Algorithms Security

Message authentication codes

Cheating

Mallory successfully cheats if Bob accepts a message m′ as valid
that Alice never sent.

Assuming a secure MAC scheme, Mallory can not cheat with
non-negligible success probability, even knowing a set of valid
message-MAC pairs previously sent by Alice.

If he could, he would be able to construct valid forged
authenticated messages, violating the assumed properties of a
MAC.

CPSC 467, Lecture 10 9/40



Outline Integrity/Authenticity Algorithms Security

Message authentication codes

Computing a MAC

A block cipher such as AES can be used to compute a MAC by
making use of CBC or CFB ciphertext chaining modes.

In these modes, the last ciphertext block ct depends on all t
message blocks m1, . . . ,mt , so we define

Ck(m) = ct .

Note that the MAC is only a single block long. This is in general
much shorter than the message.

A MAC acts like a checksum for preserving data integrity, but it
has the advantage that an adversary cannot compute a valid MAC
for an altered message.

CPSC 467, Lecture 10 10/40



Outline Integrity/Authenticity Algorithms Security

Message authentication codes

Protecting both privacy and authenticity

If Alice wants both privacy and authenticity, she can encrypt m
and use the MAC to protect the ciphertext from alteration.

I Alice sends c = Ek(m) and ξ = Ck(c).

I Bob, after receiving c ′ and ξ′, only decrypts c ′ after first
verifying that ξ′ = Ck(c ′).

I If it verifies, then Bob assumes c ′ was produced by Alice, so
he also assume that m′ = Dk(c ′) is Alice’s message m.

CPSC 467, Lecture 10 11/40



Outline Integrity/Authenticity Algorithms Security

Message authentication codes

Another possible use of a MAC

Another possibility is for Alice to send c = Ek(m) and ξ = Ck(m).
Here, the MAC is computed from m, not c .

Bob, upon receiving c ′ and ξ′, first decrypts c ′ to get m′ and then
checks that ξ′ = Ck(m′), i.e., Bob checks ξ′ = Ck(Dk(c ′))

Does this work just as well?

In practice, this might also work, but its security does not follow
from the assumed security property of the MAC.

CPSC 467, Lecture 10 12/40



Outline Integrity/Authenticity Algorithms Security

Message authentication codes

The problem

The MAC property says Mallory cannot produce a pair (m′, ξ′) for
an m′ that Alice never sent.

It does not follow that he cannot produce a pair (c ′, ξ′) that Bob
will accept as valid, even though c ′ is not the encryption of one of
Alice’s messages.

If Mallory succeeds in convincing Bob to accept (c ′, ξ′), then Bob
will decrypt c ′ to get m′ = Dk(c ′) and incorrectly accept m′ as
coming from Alice.

CPSC 467, Lecture 10 13/40



Outline Integrity/Authenticity Algorithms Security

Message authentication codes

Example of a flawed use of a MAC

Here’s how Mallory might find (c ′, ξ′) such that ξ′ = Ck(Dk(c ′)).

Suppose the MAC function Ck is derived from underlying block
encryption function Ek using the CBC or CFB chaining modes as
described earlier, and Alice also encrypts messages using Ek with
the same chaining rule.

Then the MAC is just the last ciphertext block c ′t , and Bob will
always accept (c ′, c ′t) as valid.

CPSC 467, Lecture 10 14/40



Outline Integrity/Authenticity Algorithms Security

Asymmetric digital signatures

Asymmetric digital signatures

An asymmetric (public-key) digital signature can be viewed as a
2-key MAC, just as an asymmetric (public-key) cryptosystem is a
2-key version of a classical cryptosystem.

In the literature, the term digital signature generally refers to the
asymmetric version.

CPSC 467, Lecture 10 15/40



Outline Integrity/Authenticity Algorithms Security

Asymmetric digital signatures

Asymmetric digital signatures

Let M be a message space and S a signature space.

A signature scheme consists of a private signing key d , a public
verification key e, a signature function Sd :M→ S, and a
verification predicate Ve ⊆M×S.1

A signed message is a pair (m, s) ∈M× S. A signed message is
valid if Ve(m, s) holds, and we say that (m, s) is signed with e.

1As with RSA, we denote the private component of the key pair by the
letter d and the public component by the letter e, although they no longer
have same mnemonic significance.

CPSC 467, Lecture 10 16/40



Outline Integrity/Authenticity Algorithms Security

Asymmetric digital signatures

Fundamental property of a signature scheme

Basic requirement:

The signing function always produces a valid signature, that is,

Ve(m,Sd(m)) (1)

holds for all m ∈M.

Assuming e is Alice’s public verification key, and only Alice knows
the corresponding signing key d , then a signed message (m, s) that
is valid under e identifies Alice with m (possibly erroneously, as we
shall see).

CPSC 467, Lecture 10 17/40



Outline Integrity/Authenticity Algorithms Security

Implications of Digital Signatures

What does a digital signature imply?

We like to think of a digital signature as a digital analog to a
conventional signature.

I A conventional signature binds a person to a document.
Barring forgery, a valid signature indicates that a particular
individual performed the action of signing the document.

I A digital signature binds a signing key to a document. Barring
forgery, a valid digital signature indicates that a particular
signing key was used to sign the document.

However, there is an important difference. A digital signature only
binds the signing key to the document.

Other considerations must be used to bind the individual to the
signing key.

CPSC 467, Lecture 10 18/40



Outline Integrity/Authenticity Algorithms Security

Implications of Digital Signatures

Disavowal

An individual can always disavow a signature on the grounds that
the private signing key has become compromised.

Here are two ways that this can happen.

I Her signing key might be copied, perhaps by keystroke
monitors or other forms of spyware that might have infected
her computer, or a stick memory or laptop containing the key
might be stolen.

I She might deliberately publish her signing key in order to
relinquish responsibility for documents signed by it.

For both of these reasons, one cannot conclude without a
reasonable doubt that a digitally signed document was indeed
signed by the purported holder of the signing key.

CPSC 467, Lecture 10 19/40



Outline Integrity/Authenticity Algorithms Security

Implications of Digital Signatures

Practical usefulness of digital signatures

This isn’t to say that digital signatures aren’t useful; only that they
have significantly different properties than conventional signatures.

In particular, they are subject to disavowal by the signer in a way
that conventional signatures are not.

Nevertheless, they are still very useful in situations where disavowal
is not a problem.

CPSC 467, Lecture 10 20/40



Outline Integrity/Authenticity Algorithms Security

Digital Signature Algorithms

CPSC 467, Lecture 10 21/40



Outline Integrity/Authenticity Algorithms Security

RSA digital signatures

RSA digital signature scheme

RSA can be used for digital signatures as follows:

I Alice generates an RSA modulus n and key pair (e, d), where
e is public and d private as usual.

I Let Sd(m) = Dd(m), and let Ve(m, s) hold iff m = Ee(s).

I Must verify that Ve(m,Sd(m)) hold for all messages m, i.e.,
must check that m = Ee(Dd(m)) holds.

I This is the reverse of the condition we required for RSA to be
a valid cryptosystem, viz. Dd(Ee(m)) for all m ∈ Zm.

I RSA satisfies both conditions since

m ≡ Dd(Ee(m)) ≡ (me)d ≡ (md)e ≡ Ee(Dd(m)) (mod n).

CPSC 467, Lecture 10 22/40



Outline Integrity/Authenticity Algorithms Security

RSA digital signatures

Commutative cryptosystems

A cryptosystem with this property that Dd ◦ Ee = Ee ◦ Dd is said
to be commutative, where “◦” denotes functional composition.

Indeed, any commutative public key cryptosystem can be used for
digital signatures in exactly this same way as we did for RSA.

CPSC 467, Lecture 10 23/40



Outline Integrity/Authenticity Algorithms Security

Signatures from non-commutative cryptosystems

Signatures from non-commutative cryptosystems

We digress slightly and ask what we could do in case Ee and Dd

did not commute.

One could define Se(m) = Ee(m) and Ve(m, s)⇔ m = Dd(s).
Now indeed every validly-signed message (m,Se(m)) would verify
since Dd(Ee(m)) = m is the basic property of a cryptosystem.

To make use of this scheme, Alice would have to keep e private
and make d public. Assuming Alice generated the key pair in the
first place, there is nothing preventing her from doing this.
However, the resulting system might not be secure.

Even if it is hard for Eve to find d from e, it might not be hard to
find e from d .

CPSC 467, Lecture 10 24/40



Outline Integrity/Authenticity Algorithms Security

Signatures from non-commutative cryptosystems

Interchanging public and private keys

For RSA, it is just as hard to find e from d as it is to find d from e.
That’s because RSA is completely symmetric in e and d .
Not all cryptosystems enjoy this symmetry property.

For example, the ElGamal scheme discussed in Lecture 9 is based
on the equation b = g y (mod p), where y is private and b public.

Finding y from b is the discrete log problem — believed to be hard.

Finding b from y , is straightforward, so the roles of public and
private key cannot be interchanged while preserving security.2

2However, ElGamal found a different way to use the ideas of discrete
logarithm to build a signature scheme, which we discuss next.

CPSC 467, Lecture 10 25/40



Outline Integrity/Authenticity Algorithms Security

ElGamal digital signature scheme

ElGamal signature scheme

The private signing key consists of a primitive root g of a prime p
and an exponent x .

The public verification key consists of g , p, and a = g x mod p.

To sign m:
1. Choose random y ∈ Z∗φ(p) .

2. Compute b = g y mod p.
3. Compute c = (m − xb)y−1 mod φ(p).
4. Output signature s = (b, c).

To verify (m, s), where s = (b, c):
1. Check that abbc ≡ gm (mod p).

CPSC 467, Lecture 10 26/40



Outline Integrity/Authenticity Algorithms Security

ElGamal digital signature scheme

Why do ElGamal signatures work?

We have
a = g x mod p

b = g y mod p

c = (m − xb)y−1 mod φ(p).

Want that abbc ≡ gm (mod p). Substituting, we get

abbc ≡ (g x)b(g y )c ≡ g xb+yc ≡ gm (mod p)

since xb + yc ≡ m (mod φ(p)).

CPSC 467, Lecture 10 27/40



Outline Integrity/Authenticity Algorithms Security

Security of Digital Signatures

CPSC 467, Lecture 10 28/40



Outline Integrity/Authenticity Algorithms Security

Desired security properties

Desired security properties of digital signatures

Digital signatures must be difficult to forge.

Some increasingly stringent notions of forgery-resistance:

I Resistance to forging valid signature for particular message m.

I Above, but where adversary knows a set of valid signed
messages (m1, s1), . . . , (mk , sk), and m 6∈ {m1, . . . ,mk}.

I Above, but where adversary can choose a set of valid signed
messages, specifying either the messages (corresponding to a
chosen plaintext attack) or the signatures (corresponding to
chosen ciphertext attack).

I Any of the above, but where one wishes to protect against
generating any valid signed message (m′, s ′) different from
those already seen, not just for a particular predetermined m.

CPSC 467, Lecture 10 29/40



Outline Integrity/Authenticity Algorithms Security

Security

Forging random RSA signed messages

RSA signatures are indeed vulnerable to forgery of random signed
messages.

An attacker simply chooses s ′ at random and computes
m′ = Ee(s ′).

The signed message (m′, s ′) is trivially valid since the verification
predicate is simply m′ = Ee(s ′).

CPSC 467, Lecture 10 30/40



Outline Integrity/Authenticity Algorithms Security

Security

Importance of random signed messages

One often wants to sign random strings.

For example, in the Diffie-Hellman key exchange protocol discussed
in Lecture 9, Alice and Bob exchange random-looking numbers
a = g x mod p and b = g y mod p.

In order to discourage man-in-the-middle attacks, they may wish to
sign these strings. (This assumes that they already have each
other’s public signature verification keys.)

If RSA signatures are being used, Mallory could feed bogus signed
values to Alice and Bob. The signatures would check, and both
would think they had successfully established a shared key k when
in fact they had not.

CPSC 467, Lecture 10 31/40



Outline Integrity/Authenticity Algorithms Security

Adding redundancy

Adding redundancy

One way to defeat the adversary’s ability to generate valid random
signed messages is to put redundancy into the message, for
example, by prefixing a fixed string σ to the front of each message
before signing it.

Instead of taking Sd(m) = Dd(m), one could take

Sd(m) = Dd(σm).

The corresponding verification predicate would then be

Ve(m, s)⇔ σm = Ee(s).

CPSC 467, Lecture 10 32/40



Outline Integrity/Authenticity Algorithms Security

Adding redundancy

Security of signatures with fixed redundancy

The security of this scheme depends on the mixing properties of
the encryption and decryption functions, that is, that each output
bit depends on all of the input bits.

Not all cryptosystems have this mixing property.

For example, a block cipher used in ECB mode (see lectures 3
and 6) encrypts a block at a time, so each block of output bits
depends only on the corresponding block of input bits.

CPSC 467, Lecture 10 33/40



Outline Integrity/Authenticity Algorithms Security

Adding redundancy

Forging signatures with fixed redundancy

Suppose it happens that

Sd(m) = Dd(σm) = Dd(σ) · Dd(m).

Then Mallory can forge random messages assuming he knows just
one valid signed message (m0, s0). Here’s how.

I He knows that s0 = Dd(σ) ·Dd(m), so from s0 he extracts the
prefix s00 = Dd(σ).

I He now chooses a random s ′01 and computes m′ = Ee(s ′01)
and s ′ = s00 · s ′01.

I The signed message (m′, s ′) is valid since
Ee(s ′) = Ee(s00 · s ′01) = Ee(s00) · Ee(s ′01) = σm′.

CPSC 467, Lecture 10 34/40



Outline Integrity/Authenticity Algorithms Security

Signing message digests

Signing message digests

A better way to prevent forgery is to sign a message digest of the
message rather than sign m itself.

A message digest function h, also called a cryptographic one-way
hash function or a fingerprint function, maps long strings to short
random-looking strings.

I To sign a message m, Alice computes Sd(m) = Dd(h(m)).

I To verify the signature s, Bob checks that h(m) = Ee(s).

CPSC 467, Lecture 10 35/40



Outline Integrity/Authenticity Algorithms Security

Signing message digests

Forging signed message digests

For Mallory to generate a forged signed message (m′, s ′) he must
somehow come up with m′ and s ′ satisfying

h(m′) = Ee(s ′) (2)

That is, he must find m′ and s ′ that both map to the same string,
where m′ is mapped by h and s ′ by Ee .

Two natural approaches for attempting to satisfying (2):

1. Pick m′ at random and solve for s ′.

2. Pick s ′ at random and solve for m′.

CPSC 467, Lecture 10 36/40



Outline Integrity/Authenticity Algorithms Security

Signing message digests

Solving for s ′

Approach 1:
h(m′) = Ee(s ′) (2)

To solve for s ′ given m′ requires computing

E−1e (h(m′)) = Dd(h(m′)) = s ′.

Alice can compute Dd , which is what enables her to sign messages.

But Mallory presumably cannot compute Dd without knowing d ,
for if he could, he could also break the underlying cryptosystem.

CPSC 467, Lecture 10 37/40



Outline Integrity/Authenticity Algorithms Security

Signing message digests

Solving for m′

Approach 2:
h(m′) = Ee(s ′) (2)

To solve for m′ given s ′ requires “inverting” h.

Since h is many-one, a value y = Ee(s ′) can have many “inverses”
or preimages.

To successfully forge a signed message, Mallory needs to find only
one value m′ such that h(m′) = Ee(s ′).

However, the defining property of a cryptographic hash function is
that, given y , it should be hard to find any x ∈ h−1(y).

Hence, Mallory cannot feasibly find m′ satisfying 2.

CPSC 467, Lecture 10 38/40



Outline Integrity/Authenticity Algorithms Security

Signing message digests

Other attempts

Of course, these are not the only two approaches that Mallory
might take.

Perhaps there are ways of generating valid signed messages (m′, s ′)
where m′ and s ′ are generated together.

I do not know of such a method, but this doesn’t say one doesn’t
exist.

CPSC 467, Lecture 10 39/40



Outline Integrity/Authenticity Algorithms Security

Signing message digests

More advantages of signing message digests

Another advantage of signing message digests rather than signing
messages directly: the signatures are shorter.

An RSA signature of m is roughly the same length as m.

An RSA signature of h(m) is a fixed length, regardless of how long
m is.

For both reasons of security and efficiency, signed message digests
are what is used in practice.

We’ll talk more about message digests later on.

CPSC 467, Lecture 10 40/40


	Message Integrity and Authenticity
	Message authentication codes
	Asymmetric digital signatures
	Implications of Digital Signatures

	Digital Signature Algorithms
	RSA digital signatures
	Signatures from non-commutative cryptosystems
	ElGamal digital signature scheme

	Security of Digital Signatures
	Desired security properties
	Random signed messages
	Adding redundancy
	Signing message digests


